Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user experiences.To address this,our study presents a Personalized Adaptive...Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user experiences.To address this,our study presents a Personalized Adaptive Multi-Product Recommendation System(PAMR)leveraging transfer learning and Bi-GRU(Bidirectional Gated Recurrent Units).Using a large dataset of user reviews from Amazon and Flipkart,we employ transfer learning with pre-trained models(AlexNet,GoogleNet,ResNet-50)to extract high-level attributes from product data,ensuring effective feature representation even with limited data.Bi-GRU captures both spatial and sequential dependencies in user-item interactions.The innovation of this study lies in the innovative feature fusion technique that combines the strengths of multiple transfer learning models,and the integration of an attention mechanism within the Bi-GRU framework to prioritize relevant features.Our approach addresses the classic recommendation systems that often face challenges such as cold start along with data sparsity difficulties,by utilizing robust user and item representations.The model demonstrated an accuracy of up to 96.9%,with precision and an F1-score of 96.2%and 96.97%,respectively,on the Amazon dataset,significantly outperforming the baselines and marking a considerable advancement over traditional configurations.This study highlights the effectiveness of combining transfer learning with Bi-GRU for scalable and adaptive recommendation systems,providing a versatile solution for real-world applications.展开更多
The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearabl...The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.展开更多
This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over ...This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.展开更多
Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the beha...Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.展开更多
BACKGROUND Identifying biomarkers for the risk of developing degenerative processes linked to aging and colorectal cancer(CRC) onset that could improve clinical strategies.AIM To determine valid targets and a predicti...BACKGROUND Identifying biomarkers for the risk of developing degenerative processes linked to aging and colorectal cancer(CRC) onset that could improve clinical strategies.AIM To determine valid targets and a predictive biomarker's system of chronicization of inflammation for cancer treatment.METHODS A group of 147 CRC patients was studied. Clinical diagnosis was confirmed histopathologically, and patients were sub-typed using the pathological tumornode-metastasis classification. Thirteen colon adenoma patients and 219 healthy subjects were also studied. A system biology study on Thioredoxin1/CD30 redox-immune systems(Trx1/CD30), T helper cytokines and polymorphisms of killer immunoglobulin-like receptors, FcγRIIa-131 H/R and FcγRIIIa-158 V/F was carried out. Enzyme-linked immunosorbent assay was performed to analyze sera.Genetic study was executed by polymerase chain reaction sequence-specific primers and sequence-based typing method. Statistical analysis was performed by using the "Statgraphics software systems".RESULTS We found a positive increase between Trx1/RTrx1 levels and sCD30 level and increased age. With respect to the gender relationships, there were distinct differences. Females showed a primary relationship between transforming growth factor beta(TGFβ) with Trx1, whereas males had one with TGFβ and RTrx1. Trx1/CD30 controls the redox immune homeostasis, and an imbalance in the relationship between the Trx1/RTrx1 and sCD30 levels is linked to the onset and progression of tumor. This event happens through different gender-specific cytokine pathways. Our study demonstrated that the serum levels ofTrx1/RTrx1, TGFβ/interleukin(IL)6 and TGFβ/IL4 combinations and the sCD30,IFNγ and IL2 combination constitute a predictive gender specific biomarker system. This is relevant for clinical screening to detect the risk of the potential development or progression of a tumor.CONCLUSION Oxidative stress on Trx1/CD30 is a trigger of cancer disease, and the selected oxidation and immune products are a biomarker system for aging and cancer.展开更多
Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on person...Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on personalized clinical computed tomography angiography(CTA)data,mesh models of the cardiovascular system were constructed semi-automatically.By coupling 4 D magnetic resonance imaging(MRI)sequences corresponding to a complete cardiac cycle with related physics models,a hybrid kinetic model of the cardiovascular system was built to drive kinematics and dynamics simulation.On that basis,the surgical procedures related to intervention instruments were simulated using specially-designed physics models.These models can be solved in real-time;therefore,the complex interactions between blood vessels and instruments can be well simulated.Additionally,X-ray imaging simulation algorithms and realistic rendering algorithms for virtual intervention scenes are also proposed.In particular,instrument tracking hardware with haptic feedback was developed to serve as the interaction interface of real instruments and the virtual intervention system.Finally,a personalized cardiovascular intervention simulation system was developed by integrating the techniques mentioned above.Results This system supported instant modeling and simulation of personalized clinical data and significantly improved the visual and haptic immersions of vascular intervention simulation.Conclusions It can be used in teaching basic cardiology and effectively satisfying the demands of intervention training,personalized intervention planning,and rehearsing.展开更多
It can not provide dynamic view mechanism in previous dataspace information system. In this paper, the dynamic extendable view mechanism provided by object deputy model is proposed for personalized dataspace informati...It can not provide dynamic view mechanism in previous dataspace information system. In this paper, the dynamic extendable view mechanism provided by object deputy model is proposed for personalized dataspace information system which can provide rich semantics and enough flexibility. The flexible inheritance avoids a lot of data redundancy. The cross class query mechanism allows users to find more related data based on complex relationships. The personalized dataspace service provides less storage space consumption and shorter query response time. The experiment result shows that our approach is more feasible and efficient than the traditional one.展开更多
Student selection is of crucial importance for supervisors who are choosing students for postgraduate studies or research projects.Due to the challenge of asymmetric information,it is difficult for them to find suitab...Student selection is of crucial importance for supervisors who are choosing students for postgraduate studies or research projects.Due to the challenge of asymmetric information,it is difficult for them to find suitable candidates.The existing methods do not work so well in the web 2.0 context which is inundated with vast online information.In order to overcome the deficiency,a research social network enhanced approach is proposed to provide decision support.It appeals to supervisors to adopt the proposed user-driven social marketing strategy.Meanwhile,this study mainly presents a system-driven personalized recommendation approach to support supervisors'decisions of student selection.The proposed method distinguishes supervisors based on their co-author networks to extract their potential preferences of collaboration styles.Subsequently,corresponding recommendation strategies are employed to provide personalized student recommendation services for targeted supervisors.A prototype is implemented on ScholarMate which provides online communication channels for researchers.A user study is conducted to verify the effectiveness of the proposed approach.The results enlighten designers to consider the differences among different users when designing recommendation strategies.展开更多
BACKGROUND The Cariostat caries activity test(CAT)was used to evaluate the effectiveness of personalized oral hygiene management combining oral health education and professional mechanical tooth cleaning on the oral h...BACKGROUND The Cariostat caries activity test(CAT)was used to evaluate the effectiveness of personalized oral hygiene management combining oral health education and professional mechanical tooth cleaning on the oral health status of pregnant women.AIM To investigate whether personalized oral hygiene management enhances the oral health status of pregnant women.METHODS A total of 114 pregnant women who were examined at Dalian Women’s and Children’s Medical Center were divided into four groups:High-risk experimental group(n=29;CAT score≥2;received personalized oral hygiene management training),low-risk experimental group(n=29;CAT score≤1;received oral health education),high-risk control group(n=28;CAT score≥2),and low-risk control group(n=28;CAT score≤1).No hygiene intervention was provided to control groups.CAT scores at different times were compared using independent samples t-test and least significant difference t-test.RESULTS No significant difference in baseline CAT scores was observed between the experimental and control groups,either in the high-risk or low-risk groups.CAT scores were reduced significantly after 3(1.74±0.47 vs 2.50±0.38,P<0.0001)and 6 months(0.53±0.50 vs 2.45±0.42,P<0.0001)of personalized oral hygiene management intervention but not after oral health education alone(0.43±0.39 vs 0.46±0.33,P>0.05 and 0.45±0.36 vs 0.57±0.32,P>0.05,respectively).Within groups,the decrease in CAT scores was significant(2.43±0.44 vs 1.74±0.47 vs 0.53±0.50,P<0.0001)for only the high-risk experimental group.CONCLUSION Personalized oral hygiene management is effective in improving the oral health of pregnant women and can improve pregnancy outcomes and the oral health of the general population.展开更多
Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various establis...Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various established approaches to the creation and sequencing of content-based, single learner, and self-paced learning objects. However, there is little understanding of how to create sequences of learning activities which involve groups of learners interacting within a structured set of collaborative environments. In this paper, we present an approach for learning activity sequencing based on ontology and activity graph in personalized education system. Modeling and management of learning activity and learner are depicted, and an algorithm is proposed to realize learning activity sequencing and learner ontology dynamically updating.展开更多
Under the constantly changing production and marketing conditions including globalization,the fashion apparel industries are frequently restructuring to maintain customers and sustain competitiveness.One of the method...Under the constantly changing production and marketing conditions including globalization,the fashion apparel industries are frequently restructuring to maintain customers and sustain competitiveness.One of the methodologies adopted by manufacturers includes mass customization,which attempts to produce near custom made product at near mass production cost.Since swimwear requires tighter fit tolerance and still has fashion content,it has been used in this study to illustrate the ease of design change,design modification,and customization.Multi-style design of swimsuit is very demanding and time-consuming if traditional design methods are applied.Swimsuit manufacturers require systems with the capacity to deal with garment design process as a whole,including possibilities to work directly within a 3D graphic environment.However,it is realised that one of the major challenges in garment design concerns the physically-based simulation of production and 3D visualization.An innovation method consisting of a computer-aided design(CAD)system,allowing the designer to perform multi-style swimsuit design on a customized virtual human body,is presented in this paper.The 3D visualization and personalization of the simulation results are presented to help the designers to preview and determine whether the design of the swimsuit is satisfactory and then obtain feedback to improve their designs iteratively.The new functions of the virtual system provide the abilities to perform intelligent design of various swimsuit styles and materials for different body parts according to individual design requirements.The advantages of innovative design method for swimsuit have been discussed in this paper and examples have been provided to illustrate the ease of use CAD in design simulation and innovation.展开更多
Customer churn may be a critical issue for banks. The extant literature on statistical and machine learning for customer churn focuses on the problem of correctly predicting that a customer is about to switch bank, wh...Customer churn may be a critical issue for banks. The extant literature on statistical and machine learning for customer churn focuses on the problem of correctly predicting that a customer is about to switch bank, while very rarely consid-ers the problem of generating personalized actions to improve the customer retention rate. However, these decisions are at least as critical as the correct identification of customers at risk. The decision of what actions to deliver to what customers is normally left to managers who can only rely upon their knowledge. By looking at the scientific literature on CRM and personalization, this research proposes a number of models which can be used to generate marketing ac-tions, and shows how to integrate them into a model embracing both the analytical prediction of customer churn and the generation of retention actions. The benefits and risks associated with each approach are discussed. The paper also describes a case of application of a predictive model of customer churn in a retail bank where the analysts have also generated a set of personalized actions to retain customers by using one of the approaches presented in the paper, namely by adapting a recommender system approach to the retention problem.展开更多
According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different sy...According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different system level; then design in detail system process from the front and back office systems, and in detail descript the key data in the database and several tables. Finally, the paper respectively tests several main modules of onstage system and the backstage system. The paper designed electronic commerce recommendation based on personalized recommendation system, it can complete the basic function of the electronic commerce system, also can be personalized commodity recommendation for different users, the user data information and the user' s shopping records.展开更多
With the continuous growth of civil aviation passenger traffic, airlines and airports must constantly improve the level of operation and management, in order to meet the high quality and the high level of passenger de...With the continuous growth of civil aviation passenger traffic, airlines and airports must constantly improve the level of operation and management, in order to meet the high quality and the high level of passenger demand for personalized service. This paper puts forward that the airport passenger personalized service system in the era of big data, which can achieve high precision indoor and outdoor positioning seamless switch through using the integration of GPS and Beacon technology. Personalized service client for mobile intelligent terminal was developed to provide more convenient, efficient, dynamic and personalized airport information service for airport passenger.展开更多
Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discr...Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type,thereby leading to different functional and biological properties,which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors.However,the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated.Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways.The promising potential of targeting RHOA as a therapeutic modality is also outlined.This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.展开更多
This paper introduces a cutting-edge framework for personalized chronic pain management,leveraging the power of artificial intelligence(AI)and personality insights.It explores the intricate relationship between person...This paper introduces a cutting-edge framework for personalized chronic pain management,leveraging the power of artificial intelligence(AI)and personality insights.It explores the intricate relationship between personality traits and pain perception,expression,and management,identifying key correlations that influence an individual’s experience of pain.By integrating personality psychology with AI-driven personality assessment,this framework offers a novel approach to tailoring chronic pain management strategies for each patient’s unique personality profile.It highlights the relevance of well-established personality theories such as the Big Five and the Myers-Briggs Type Indicator(MBTI)in shaping personalized pain management plans.Additionally,the paper introduces multimodal AI-driven personality assessment,emphasizing the ethical considerations and data collection processes necessary for its implementation.Through illustrative case studies,the paper exemplifies how this framework can lead to more effective and patient-centered pain relief,ultimately enhancing overall well-being.In conclusion,the paper positions the need of an“AI-Powered Holistic Pain Management Initiative”which has the potential to transform chronic pain management by providing personalized,data-driven solutions and create a multifaceted research impact influencing clinical practice,patient outcomes,healthcare policy,and the broader scientific community’s understanding of personalized medicine and AI-driven interventions.展开更多
In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes....In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.展开更多
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen...The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.展开更多
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game ...Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game design elements,accompanying pertinent pedagogical objectives of interest.This paper focuses on a cross-platform,innovative,gamified,educational learning system product,funded by the Hellenic Republic Ministry of Development and Investments:howlearn.By applying gamification techniques,in 3D virtual environments,within which,learners fulfil STEAM(Science,Technology,Engineering,Arts and Mathematics)-related Experiments(Simulations,Virtual Labs,Interactive Storytelling Scenarios,Decision Making Case Studies),howlearn covers learners’subject material,while,simultaneously,functioning,as an Authoring Gamification Tool and as a Game Metrics Repository;users’metrics are being,dynamically,analyzed,through Machine Learning Algorithms.Consequently,the System learns from the data and learners receive Personalized Feedback Report Dashboards of their overall performance,weaknesses,interests and general class competency.A Custom Recommendation System(Collaborative Filtering,Content-Based Filtering)then supplies suggestions,representing the best matches between Experiments and learners,while also focusing on the reinforcement of the learning weaknesses of the latter.Ultimately,by optimizing the Accuracy,Performance and Predictive capability of the Personalized Feedback Report,we provide learners with scientifically valid performance assessments and educational recommendations,thence intensifying sustainable,learner-centered education.展开更多
文摘Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user experiences.To address this,our study presents a Personalized Adaptive Multi-Product Recommendation System(PAMR)leveraging transfer learning and Bi-GRU(Bidirectional Gated Recurrent Units).Using a large dataset of user reviews from Amazon and Flipkart,we employ transfer learning with pre-trained models(AlexNet,GoogleNet,ResNet-50)to extract high-level attributes from product data,ensuring effective feature representation even with limited data.Bi-GRU captures both spatial and sequential dependencies in user-item interactions.The innovation of this study lies in the innovative feature fusion technique that combines the strengths of multiple transfer learning models,and the integration of an attention mechanism within the Bi-GRU framework to prioritize relevant features.Our approach addresses the classic recommendation systems that often face challenges such as cold start along with data sparsity difficulties,by utilizing robust user and item representations.The model demonstrated an accuracy of up to 96.9%,with precision and an F1-score of 96.2%and 96.97%,respectively,on the Amazon dataset,significantly outperforming the baselines and marking a considerable advancement over traditional configurations.This study highlights the effectiveness of combining transfer learning with Bi-GRU for scalable and adaptive recommendation systems,providing a versatile solution for real-world applications.
文摘The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.
基金the National Natural Science Foundation of China(No.11902153)the Natural Science Foundation of Jiangsu Province(No.BK20190378)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.
基金supported by the National Natural Science Foundation of China (61972300, 61672401, 61373045, and 61902288,)the Pre-Research Project of the “Thirteenth Five-Year-Plan” of China (315***10101 and 315**0102)
文摘Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.
文摘BACKGROUND Identifying biomarkers for the risk of developing degenerative processes linked to aging and colorectal cancer(CRC) onset that could improve clinical strategies.AIM To determine valid targets and a predictive biomarker's system of chronicization of inflammation for cancer treatment.METHODS A group of 147 CRC patients was studied. Clinical diagnosis was confirmed histopathologically, and patients were sub-typed using the pathological tumornode-metastasis classification. Thirteen colon adenoma patients and 219 healthy subjects were also studied. A system biology study on Thioredoxin1/CD30 redox-immune systems(Trx1/CD30), T helper cytokines and polymorphisms of killer immunoglobulin-like receptors, FcγRIIa-131 H/R and FcγRIIIa-158 V/F was carried out. Enzyme-linked immunosorbent assay was performed to analyze sera.Genetic study was executed by polymerase chain reaction sequence-specific primers and sequence-based typing method. Statistical analysis was performed by using the "Statgraphics software systems".RESULTS We found a positive increase between Trx1/RTrx1 levels and sCD30 level and increased age. With respect to the gender relationships, there were distinct differences. Females showed a primary relationship between transforming growth factor beta(TGFβ) with Trx1, whereas males had one with TGFβ and RTrx1. Trx1/CD30 controls the redox immune homeostasis, and an imbalance in the relationship between the Trx1/RTrx1 and sCD30 levels is linked to the onset and progression of tumor. This event happens through different gender-specific cytokine pathways. Our study demonstrated that the serum levels ofTrx1/RTrx1, TGFβ/interleukin(IL)6 and TGFβ/IL4 combinations and the sCD30,IFNγ and IL2 combination constitute a predictive gender specific biomarker system. This is relevant for clinical screening to detect the risk of the potential development or progression of a tumor.CONCLUSION Oxidative stress on Trx1/CD30 is a trigger of cancer disease, and the selected oxidation and immune products are a biomarker system for aging and cancer.
基金the Beijing Natural Science Foundation-Haidian Primitive Innovation Joint Fund(L 182016)Natural Science Foundation of China(61672077,61532002)Applied Basic Research Program of Qingdao(161013 xx).
文摘Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on personalized clinical computed tomography angiography(CTA)data,mesh models of the cardiovascular system were constructed semi-automatically.By coupling 4 D magnetic resonance imaging(MRI)sequences corresponding to a complete cardiac cycle with related physics models,a hybrid kinetic model of the cardiovascular system was built to drive kinematics and dynamics simulation.On that basis,the surgical procedures related to intervention instruments were simulated using specially-designed physics models.These models can be solved in real-time;therefore,the complex interactions between blood vessels and instruments can be well simulated.Additionally,X-ray imaging simulation algorithms and realistic rendering algorithms for virtual intervention scenes are also proposed.In particular,instrument tracking hardware with haptic feedback was developed to serve as the interaction interface of real instruments and the virtual intervention system.Finally,a personalized cardiovascular intervention simulation system was developed by integrating the techniques mentioned above.Results This system supported instant modeling and simulation of personalized clinical data and significantly improved the visual and haptic immersions of vascular intervention simulation.Conclusions It can be used in teaching basic cardiology and effectively satisfying the demands of intervention training,personalized intervention planning,and rehearsing.
基金Supported by the National Natural Science Foundation of China (60573095)the Program for New Century Excellent Talents at Univer-sity of China (NCET-04-0675)+2 种基金the National High Technology Research and Development Program of China (2006AA12Z210)Specialized Research Fund for the Doctoral Program of Higher Education of China (20050486024)State Key Laboratory of Software Engineering (SKLSE05-01)
文摘It can not provide dynamic view mechanism in previous dataspace information system. In this paper, the dynamic extendable view mechanism provided by object deputy model is proposed for personalized dataspace information system which can provide rich semantics and enough flexibility. The flexible inheritance avoids a lot of data redundancy. The cross class query mechanism allows users to find more related data based on complex relationships. The personalized dataspace service provides less storage space consumption and shorter query response time. The experiment result shows that our approach is more feasible and efficient than the traditional one.
基金Fujian Provincial Education Department Project,China(No.JAS180414)Putian University Project,China(No.2018061)Fujian Provincial Social Science Project,China(No.FJ2017C009)。
文摘Student selection is of crucial importance for supervisors who are choosing students for postgraduate studies or research projects.Due to the challenge of asymmetric information,it is difficult for them to find suitable candidates.The existing methods do not work so well in the web 2.0 context which is inundated with vast online information.In order to overcome the deficiency,a research social network enhanced approach is proposed to provide decision support.It appeals to supervisors to adopt the proposed user-driven social marketing strategy.Meanwhile,this study mainly presents a system-driven personalized recommendation approach to support supervisors'decisions of student selection.The proposed method distinguishes supervisors based on their co-author networks to extract their potential preferences of collaboration styles.Subsequently,corresponding recommendation strategies are employed to provide personalized student recommendation services for targeted supervisors.A prototype is implemented on ScholarMate which provides online communication channels for researchers.A user study is conducted to verify the effectiveness of the proposed approach.The results enlighten designers to consider the differences among different users when designing recommendation strategies.
基金Dalian Science and Technology Plan Project,No 2022080102.
文摘BACKGROUND The Cariostat caries activity test(CAT)was used to evaluate the effectiveness of personalized oral hygiene management combining oral health education and professional mechanical tooth cleaning on the oral health status of pregnant women.AIM To investigate whether personalized oral hygiene management enhances the oral health status of pregnant women.METHODS A total of 114 pregnant women who were examined at Dalian Women’s and Children’s Medical Center were divided into four groups:High-risk experimental group(n=29;CAT score≥2;received personalized oral hygiene management training),low-risk experimental group(n=29;CAT score≤1;received oral health education),high-risk control group(n=28;CAT score≥2),and low-risk control group(n=28;CAT score≤1).No hygiene intervention was provided to control groups.CAT scores at different times were compared using independent samples t-test and least significant difference t-test.RESULTS No significant difference in baseline CAT scores was observed between the experimental and control groups,either in the high-risk or low-risk groups.CAT scores were reduced significantly after 3(1.74±0.47 vs 2.50±0.38,P<0.0001)and 6 months(0.53±0.50 vs 2.45±0.42,P<0.0001)of personalized oral hygiene management intervention but not after oral health education alone(0.43±0.39 vs 0.46±0.33,P>0.05 and 0.45±0.36 vs 0.57±0.32,P>0.05,respectively).Within groups,the decrease in CAT scores was significant(2.43±0.44 vs 1.74±0.47 vs 0.53±0.50,P<0.0001)for only the high-risk experimental group.CONCLUSION Personalized oral hygiene management is effective in improving the oral health of pregnant women and can improve pregnancy outcomes and the oral health of the general population.
基金the National Natural Science Foundation of China (60473076, 60573095)
文摘Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various established approaches to the creation and sequencing of content-based, single learner, and self-paced learning objects. However, there is little understanding of how to create sequences of learning activities which involve groups of learners interacting within a structured set of collaborative environments. In this paper, we present an approach for learning activity sequencing based on ontology and activity graph in personalized education system. Modeling and management of learning activity and learner are depicted, and an algorithm is proposed to realize learning activity sequencing and learner ontology dynamically updating.
基金The Hong Kong Polytechnic University Grant,Hong Kong,China(No.1ZV1Z)
文摘Under the constantly changing production and marketing conditions including globalization,the fashion apparel industries are frequently restructuring to maintain customers and sustain competitiveness.One of the methodologies adopted by manufacturers includes mass customization,which attempts to produce near custom made product at near mass production cost.Since swimwear requires tighter fit tolerance and still has fashion content,it has been used in this study to illustrate the ease of design change,design modification,and customization.Multi-style design of swimsuit is very demanding and time-consuming if traditional design methods are applied.Swimsuit manufacturers require systems with the capacity to deal with garment design process as a whole,including possibilities to work directly within a 3D graphic environment.However,it is realised that one of the major challenges in garment design concerns the physically-based simulation of production and 3D visualization.An innovation method consisting of a computer-aided design(CAD)system,allowing the designer to perform multi-style swimsuit design on a customized virtual human body,is presented in this paper.The 3D visualization and personalization of the simulation results are presented to help the designers to preview and determine whether the design of the swimsuit is satisfactory and then obtain feedback to improve their designs iteratively.The new functions of the virtual system provide the abilities to perform intelligent design of various swimsuit styles and materials for different body parts according to individual design requirements.The advantages of innovative design method for swimsuit have been discussed in this paper and examples have been provided to illustrate the ease of use CAD in design simulation and innovation.
文摘Customer churn may be a critical issue for banks. The extant literature on statistical and machine learning for customer churn focuses on the problem of correctly predicting that a customer is about to switch bank, while very rarely consid-ers the problem of generating personalized actions to improve the customer retention rate. However, these decisions are at least as critical as the correct identification of customers at risk. The decision of what actions to deliver to what customers is normally left to managers who can only rely upon their knowledge. By looking at the scientific literature on CRM and personalization, this research proposes a number of models which can be used to generate marketing ac-tions, and shows how to integrate them into a model embracing both the analytical prediction of customer churn and the generation of retention actions. The benefits and risks associated with each approach are discussed. The paper also describes a case of application of a predictive model of customer churn in a retail bank where the analysts have also generated a set of personalized actions to retain customers by using one of the approaches presented in the paper, namely by adapting a recommender system approach to the retention problem.
文摘According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different system level; then design in detail system process from the front and back office systems, and in detail descript the key data in the database and several tables. Finally, the paper respectively tests several main modules of onstage system and the backstage system. The paper designed electronic commerce recommendation based on personalized recommendation system, it can complete the basic function of the electronic commerce system, also can be personalized commodity recommendation for different users, the user data information and the user' s shopping records.
文摘With the continuous growth of civil aviation passenger traffic, airlines and airports must constantly improve the level of operation and management, in order to meet the high quality and the high level of passenger demand for personalized service. This paper puts forward that the airport passenger personalized service system in the era of big data, which can achieve high precision indoor and outdoor positioning seamless switch through using the integration of GPS and Beacon technology. Personalized service client for mobile intelligent terminal was developed to provide more convenient, efficient, dynamic and personalized airport information service for airport passenger.
基金This work was supported by the Natural Science Foundation of Guangdong Province(Grant No.2019A1515011354).
文摘Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type,thereby leading to different functional and biological properties,which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors.However,the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated.Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways.The promising potential of targeting RHOA as a therapeutic modality is also outlined.This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.
文摘This paper introduces a cutting-edge framework for personalized chronic pain management,leveraging the power of artificial intelligence(AI)and personality insights.It explores the intricate relationship between personality traits and pain perception,expression,and management,identifying key correlations that influence an individual’s experience of pain.By integrating personality psychology with AI-driven personality assessment,this framework offers a novel approach to tailoring chronic pain management strategies for each patient’s unique personality profile.It highlights the relevance of well-established personality theories such as the Big Five and the Myers-Briggs Type Indicator(MBTI)in shaping personalized pain management plans.Additionally,the paper introduces multimodal AI-driven personality assessment,emphasizing the ethical considerations and data collection processes necessary for its implementation.Through illustrative case studies,the paper exemplifies how this framework can lead to more effective and patient-centered pain relief,ultimately enhancing overall well-being.In conclusion,the paper positions the need of an“AI-Powered Holistic Pain Management Initiative”which has the potential to transform chronic pain management by providing personalized,data-driven solutions and create a multifaceted research impact influencing clinical practice,patient outcomes,healthcare policy,and the broader scientific community’s understanding of personalized medicine and AI-driven interventions.
基金the Researchers Supporting Project number(RSP2024R281),King Saud University,Riyadh,Saudi Arabia.
文摘In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.
基金supported by the Industrial Support Project of Gansu Colleges under Grant No.2022CYZC-11Gansu Natural Science Foundation Project under Grant No.21JR7RA114+1 种基金National Natural Science Foundation of China under Grants No.622760736,No.1762078,and No.61363058Northwest Normal University Teachers Research Capacity Promotion Plan under Grant No.NWNU-LKQN2019-2.
文摘The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
文摘Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game design elements,accompanying pertinent pedagogical objectives of interest.This paper focuses on a cross-platform,innovative,gamified,educational learning system product,funded by the Hellenic Republic Ministry of Development and Investments:howlearn.By applying gamification techniques,in 3D virtual environments,within which,learners fulfil STEAM(Science,Technology,Engineering,Arts and Mathematics)-related Experiments(Simulations,Virtual Labs,Interactive Storytelling Scenarios,Decision Making Case Studies),howlearn covers learners’subject material,while,simultaneously,functioning,as an Authoring Gamification Tool and as a Game Metrics Repository;users’metrics are being,dynamically,analyzed,through Machine Learning Algorithms.Consequently,the System learns from the data and learners receive Personalized Feedback Report Dashboards of their overall performance,weaknesses,interests and general class competency.A Custom Recommendation System(Collaborative Filtering,Content-Based Filtering)then supplies suggestions,representing the best matches between Experiments and learners,while also focusing on the reinforcement of the learning weaknesses of the latter.Ultimately,by optimizing the Accuracy,Performance and Predictive capability of the Personalized Feedback Report,we provide learners with scientifically valid performance assessments and educational recommendations,thence intensifying sustainable,learner-centered education.