The PnP problem is a widely used technique for pose determination in computer vision community,and finding out geometric conditions of multiple solutions is the ultimate and most desirable goal of the multi-solution a...The PnP problem is a widely used technique for pose determination in computer vision community,and finding out geometric conditions of multiple solutions is the ultimate and most desirable goal of the multi-solution analysis,which is also a key research issue of the problem.In this paper,we prove that given 3 control points,if the camera's optical center lies on the so-called“danger cylinder”and is enough far from the supporting plane of control points,the corresponding P3P problem must have 3 positive solutions.This result can bring some new insights into a better understanding of the multi-solution problem.For example,it is shown in the literature that the solution of the P3P problem is instable if the optical center lies on this danger cylinder,we think such occurrence of triple-solution is the primary source of this instability.展开更多
A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three...A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three solutions to the problems is proved.展开更多
In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic...In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the bounda...A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.展开更多
Feasible-interior-point algorithms start from a strictly feasible interior point, but infeassible-interior-point algorithms just need to start from an arbitrary positive point, we give a potential reduction algorithm ...Feasible-interior-point algorithms start from a strictly feasible interior point, but infeassible-interior-point algorithms just need to start from an arbitrary positive point, we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem. Its polynomial complexity is analyzed. After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region. Key words linear complementarity problems - infeasible-starting-point - P-matrix - potential function CLC number O 221 Foundation item: Supported by the National Natural Science Foundation of China (70371032) and the Doctoral Educational Foundation of China of the Ministry of Education (20020486035)Biography: Wang Yan-jin (1976-), male, Ph. D candidate, research direction: optimal theory and method.展开更多
In this paper, several existence results of multiple positive solutions are obtained for a boundary value problem with p-Laplacian, by applying a fixed point theorem in cones. The interesting point is that the nonline...In this paper, several existence results of multiple positive solutions are obtained for a boundary value problem with p-Laplacian, by applying a fixed point theorem in cones. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.展开更多
In this paper, two approaches are used to solve the PerspectiveThree-Point Problem (P3P): the symbolic computation approach and the geometric approach. In the symbolic computation approach, we use Wu-Ritt's zero ...In this paper, two approaches are used to solve the PerspectiveThree-Point Problem (P3P): the symbolic computation approach and the geometric approach. In the symbolic computation approach, we use Wu-Ritt's zero decomposition algorithm to give a complete triangular decomposition for the P3P equation system. This decomposition provides the first complete analytical solution to the P3P problem. In the geometric approach, we give some pure geometric criteria for the number of real physical solutions. The complete solution classification for two special cases with three and four parameters is also given.展开更多
In the PnP problem,the imaging devices follow the perspective rule and the imaging rays pass through a common point. However,there are many new imaging devices being developed for robot navigation or other fields with...In the PnP problem,the imaging devices follow the perspective rule and the imaging rays pass through a common point. However,there are many new imaging devices being developed for robot navigation or other fields with the advance in imaging technologies for machine vision. These devise are not necessarily being designed to follow the perspective rule in order to satisfy some design criterion and,thus, the imaging rays may not pass through a common point.Such generalized imaging devices may not be perspective and, therefore, their poses cannot be estimated with traditional perspective technique.Using the Wu-Ritt's zero decomposition method,the main component for the nonperspective-three-point problem is given. We prove that there are at most eight solutions in the general case and give the solution classification for the NP3P problem.展开更多
基金Supported by"973"Program(2002CB312104)National Natural Science Foundation of P.R.China(60375006)the Research Foundation of North China Unversity of Technology University
文摘The PnP problem is a widely used technique for pose determination in computer vision community,and finding out geometric conditions of multiple solutions is the ultimate and most desirable goal of the multi-solution analysis,which is also a key research issue of the problem.In this paper,we prove that given 3 control points,if the camera's optical center lies on the so-called“danger cylinder”and is enough far from the supporting plane of control points,the corresponding P3P problem must have 3 positive solutions.This result can bring some new insights into a better understanding of the multi-solution problem.For example,it is shown in the literature that the solution of the P3P problem is instable if the optical center lies on this danger cylinder,we think such occurrence of triple-solution is the primary source of this instability.
基金supported by the National Natural Science Foundation of China(Nos.10971043 and 11001063)the Natural Science Foundation of Heilongjiang Province of China(No.A200803)
文摘A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three solutions to the problems is proved.
文摘In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Sponsored by the National Natural Science Foundation of China (10671012)Doctoral Program Foundation of Education Ministry of China(20050007011)
文摘A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.
文摘Feasible-interior-point algorithms start from a strictly feasible interior point, but infeassible-interior-point algorithms just need to start from an arbitrary positive point, we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem. Its polynomial complexity is analyzed. After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region. Key words linear complementarity problems - infeasible-starting-point - P-matrix - potential function CLC number O 221 Foundation item: Supported by the National Natural Science Foundation of China (70371032) and the Doctoral Educational Foundation of China of the Ministry of Education (20020486035)Biography: Wang Yan-jin (1976-), male, Ph. D candidate, research direction: optimal theory and method.
文摘In this paper, several existence results of multiple positive solutions are obtained for a boundary value problem with p-Laplacian, by applying a fixed point theorem in cones. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.
基金the National Natural Science Foundation of China under an outstanding youth grant (No. 69725002) and by the NKBRSF of China (N
文摘In this paper, two approaches are used to solve the PerspectiveThree-Point Problem (P3P): the symbolic computation approach and the geometric approach. In the symbolic computation approach, we use Wu-Ritt's zero decomposition algorithm to give a complete triangular decomposition for the P3P equation system. This decomposition provides the first complete analytical solution to the P3P problem. In the geometric approach, we give some pure geometric criteria for the number of real physical solutions. The complete solution classification for two special cases with three and four parameters is also given.
基金This project was partially supported by Shuxue Tianyuan Foundation(No.10526031).
文摘In the PnP problem,the imaging devices follow the perspective rule and the imaging rays pass through a common point. However,there are many new imaging devices being developed for robot navigation or other fields with the advance in imaging technologies for machine vision. These devise are not necessarily being designed to follow the perspective rule in order to satisfy some design criterion and,thus, the imaging rays may not pass through a common point.Such generalized imaging devices may not be perspective and, therefore, their poses cannot be estimated with traditional perspective technique.Using the Wu-Ritt's zero decomposition method,the main component for the nonperspective-three-point problem is given. We prove that there are at most eight solutions in the general case and give the solution classification for the NP3P problem.