针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algori...为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algorithm,SSA)的复合IP&O-SSA。该算法对SSA加入了Tent序列初始化,对预警者加入了Levy飞行策略,再对P&O进行了自适应和滤波处理。该算法采用双层控制结构,先通过改进后的SSA进行全局搜索到最大功率点附近,再通过改进后的IP&O进行小步平缓搜索到跟踪最大功率点。通过在Simulink仿真标准环境、局部遮荫、环境突变3种情形,仿真结果表明:在标准环境下,该算法最先跟踪到最大功率点,收敛时间比改进前的扰动观察(P&O)和SSA缩短了3 ms、16 ms,跟踪效率高达99.99%;局部遮荫条件下,只有P&O会陷入局部最优,无法有效跟踪到系统的最大功率点,相较于改进前的SSA,该文算法的平均收敛时间缩短了8 ms,同时跟踪效率高达99.68%,提升了0.09%。验证了该算法适用于日常大部分应用情景,为提升光伏阵列的发电效率提供了理论控制算法基础,为之后的光伏阵列并网减少了不必要的功率损耗。展开更多
最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率...最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。展开更多
为了提高光伏电池转换效率、降低能量损失,有必要研究最大功率点跟踪(maximum power point tracking,MPPT)方法。针对传统扰动观察法(perturbation observation method,P&O)存在无法兼顾跟踪速度与稳态精度、在光照度发生较大变化...为了提高光伏电池转换效率、降低能量损失,有必要研究最大功率点跟踪(maximum power point tracking,MPPT)方法。针对传统扰动观察法(perturbation observation method,P&O)存在无法兼顾跟踪速度与稳态精度、在光照度发生较大变化时会产生误判现象的问题,文中提出一种能适应环境变化的变步长P&O控制策略。首先,利用光伏电池刚启动时类似恒流源的特性获取当前光照度下的短路电流,通过固定电流法推导出最大功率点(maximum power point,MPP)的参考电压;其次,当光照度突变时,提出功率修正方法,并给出突变时的变步长调整策略;最后,设计基于线性扩张状态观测器(linear extended state observer,LESO)的分数阶比例积分微分(fractional order proportion integration differentiation,FOPID)控制器,可以对算法输出的参考电压进一步进行跟踪补偿。仿真结果表明,所提控制策略可以提高稳态精度和跟踪速度,有效提高光伏电池的输出功率。展开更多
局部遮阴情况下光伏阵列的输出功率呈现多峰现象,导致传统MPPT控制算法失效,而基于元启发式算法的MPPT控制功率追踪速度慢,输出功率振荡大。针对上述问题,提出一种基于改进型灰狼优化算法(improved grey wolf optimization algorithm,IG...局部遮阴情况下光伏阵列的输出功率呈现多峰现象,导致传统MPPT控制算法失效,而基于元启发式算法的MPPT控制功率追踪速度慢,输出功率振荡大。针对上述问题,提出一种基于改进型灰狼优化算法(improved grey wolf optimization algorithm,IGWO)与改进型扰动观察法(improved perturbation and observation method,IP&O)相结合的光伏MPPT控制算法。IGWO采用非线性收敛因子调整策略提高算法适应性,并通过使用改进型莱维飞行与增强型醉汉漫步结合的搜索策略平衡全局搜索与局部寻优的关系。利用IGWO追踪至最大功率点附近,再与可调节扰动步长变化速率的IP&O结合实现最大功率的稳定输出。算法测试实验数据和仿真结果表明,所提出的MPPT控制算法具有快速的追踪速度和高输出精度,且在功率追踪过程中输出振荡小。展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic...The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic system, regardless of irradiation and temperature variations. In this research, we present a novel technique to improve the control’s performances optimization of the system consisting of a photovoltaic panel, a buck converter and a load. Simulations of different parts of the system are developed under Matlab/Simulink, thus allowing a comparison between the performances of the three studied controllers: “Fuzzy TS”, “P&O” and “PSO”. The three algorithms of MPPT associated with these techniques are tested in different meteorological conditions. The obtained results, in different operating conditions, reveal a clear improvement of controlling performances of MPPT of a photovoltaic system when the PSO tracking technique is used.展开更多
针对传统的扰动观察法(perturbation and observation method,P&O)跟踪速度较慢、跟踪精度不高,且容易振荡等问题,提出一种基于改进P&O的光伏最大功率点跟踪(maximum power point tracking,MPPT)控制方法,以占空比为扰动步长,...针对传统的扰动观察法(perturbation and observation method,P&O)跟踪速度较慢、跟踪精度不高,且容易振荡等问题,提出一种基于改进P&O的光伏最大功率点跟踪(maximum power point tracking,MPPT)控制方法,以占空比为扰动步长,将光伏阵列的功率变化率dP/dU和电压偏差变化率ΔU/ΔP引入扰动步长中,通过实时自适应调整占空比,实现更快、更可靠地跟踪最大功率点。仿真结果表明,相较于传统P&O,改进的P&O在同等条件下拥有更好的跟踪速度与跟踪精度。展开更多
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algorithm,SSA)的复合IP&O-SSA。该算法对SSA加入了Tent序列初始化,对预警者加入了Levy飞行策略,再对P&O进行了自适应和滤波处理。该算法采用双层控制结构,先通过改进后的SSA进行全局搜索到最大功率点附近,再通过改进后的IP&O进行小步平缓搜索到跟踪最大功率点。通过在Simulink仿真标准环境、局部遮荫、环境突变3种情形,仿真结果表明:在标准环境下,该算法最先跟踪到最大功率点,收敛时间比改进前的扰动观察(P&O)和SSA缩短了3 ms、16 ms,跟踪效率高达99.99%;局部遮荫条件下,只有P&O会陷入局部最优,无法有效跟踪到系统的最大功率点,相较于改进前的SSA,该文算法的平均收敛时间缩短了8 ms,同时跟踪效率高达99.68%,提升了0.09%。验证了该算法适用于日常大部分应用情景,为提升光伏阵列的发电效率提供了理论控制算法基础,为之后的光伏阵列并网减少了不必要的功率损耗。
文摘最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。
文摘为了提高光伏电池转换效率、降低能量损失,有必要研究最大功率点跟踪(maximum power point tracking,MPPT)方法。针对传统扰动观察法(perturbation observation method,P&O)存在无法兼顾跟踪速度与稳态精度、在光照度发生较大变化时会产生误判现象的问题,文中提出一种能适应环境变化的变步长P&O控制策略。首先,利用光伏电池刚启动时类似恒流源的特性获取当前光照度下的短路电流,通过固定电流法推导出最大功率点(maximum power point,MPP)的参考电压;其次,当光照度突变时,提出功率修正方法,并给出突变时的变步长调整策略;最后,设计基于线性扩张状态观测器(linear extended state observer,LESO)的分数阶比例积分微分(fractional order proportion integration differentiation,FOPID)控制器,可以对算法输出的参考电压进一步进行跟踪补偿。仿真结果表明,所提控制策略可以提高稳态精度和跟踪速度,有效提高光伏电池的输出功率。
文摘局部遮阴情况下光伏阵列的输出功率呈现多峰现象,导致传统MPPT控制算法失效,而基于元启发式算法的MPPT控制功率追踪速度慢,输出功率振荡大。针对上述问题,提出一种基于改进型灰狼优化算法(improved grey wolf optimization algorithm,IGWO)与改进型扰动观察法(improved perturbation and observation method,IP&O)相结合的光伏MPPT控制算法。IGWO采用非线性收敛因子调整策略提高算法适应性,并通过使用改进型莱维飞行与增强型醉汉漫步结合的搜索策略平衡全局搜索与局部寻优的关系。利用IGWO追踪至最大功率点附近,再与可调节扰动步长变化速率的IP&O结合实现最大功率的稳定输出。算法测试实验数据和仿真结果表明,所提出的MPPT控制算法具有快速的追踪速度和高输出精度,且在功率追踪过程中输出振荡小。
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
文摘The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic system, regardless of irradiation and temperature variations. In this research, we present a novel technique to improve the control’s performances optimization of the system consisting of a photovoltaic panel, a buck converter and a load. Simulations of different parts of the system are developed under Matlab/Simulink, thus allowing a comparison between the performances of the three studied controllers: “Fuzzy TS”, “P&O” and “PSO”. The three algorithms of MPPT associated with these techniques are tested in different meteorological conditions. The obtained results, in different operating conditions, reveal a clear improvement of controlling performances of MPPT of a photovoltaic system when the PSO tracking technique is used.
文摘针对传统的扰动观察法(perturbation and observation method,P&O)跟踪速度较慢、跟踪精度不高,且容易振荡等问题,提出一种基于改进P&O的光伏最大功率点跟踪(maximum power point tracking,MPPT)控制方法,以占空比为扰动步长,将光伏阵列的功率变化率dP/dU和电压偏差变化率ΔU/ΔP引入扰动步长中,通过实时自适应调整占空比,实现更快、更可靠地跟踪最大功率点。仿真结果表明,相较于传统P&O,改进的P&O在同等条件下拥有更好的跟踪速度与跟踪精度。