期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Adaptive control of bifurcation and chaos in a time-delayed system 被引量:1
1
作者 李宁 袁惠群 +1 位作者 孙海义 张庆灵 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期245-255,共11页
In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,t... In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes,the adaptive control idea is introduced,i.e.,the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws,respectively.The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem.The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods.They have the advantages of increased stability,adaptability to the changes of the system parameters,control cost saving,and simplicity.Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods.A comparison of the two adaptive control methods is also made in an experimental study. 展开更多
关键词 DELAY parameter perturbation control hybrid control adaptive control
下载PDF
Machine Learning Accelerated Real-Time Model Predictive Control for Power Systems 被引量:1
2
作者 Ramij Raja Hossain Ratnesh Kumar 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期916-930,共15页
This paper presents a machine-learning-based speedup strategy for real-time implementation of model-predictive-control(MPC)in emergency voltage stabilization of power systems.Despite success in various applications,re... This paper presents a machine-learning-based speedup strategy for real-time implementation of model-predictive-control(MPC)in emergency voltage stabilization of power systems.Despite success in various applications,real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems,and in power systems,the computation time exceeds the available decision time used in practice by a large extent.This long-standing problem is addressed here by developing a novel MPC-based framework that i)computes an optimal strategy for nominal loads in an offline setting and adapts it for real-time scenarios by successive online control corrections at each control instant utilizing the latest measurements,and ii)employs a machine-learning based approach for the prediction of voltage trajectory and its sensitivity to control inputs,thereby accelerating the overall control computation by multiple times.Additionally,a realistic control coordination scheme among static var compensators(SVC),load-shedding(LS),and load tap-changers(LTC)is presented that incorporates the practical delayed actions of the LTCs.The performance of the proposed scheme is validated for IEEE 9-bus and 39-bus systems,with±20%variations in nominal loading conditions together with contingencies.We show that our proposed methodology speeds up the online computation by 20-fold,bringing it down to a practically feasible value(fraction of a second),making the MPC real-time and feasible for power system control for the first time. 展开更多
关键词 Machine learning model predictive control(MPC) neural network perturbation control voltage stabilization
下载PDF
On the model-based networked control for singularly perturbed systems 被引量:1
3
作者 Hongwang YU Zhiming WANG Yufan ZHENG 《控制理论与应用(英文版)》 EI 2008年第2期153-162,共10页
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr... In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay. 展开更多
关键词 Model-based networked control systems Singularly perturbed control systems Asymptotically stable Globally practical stability
下载PDF
Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System
4
作者 N.Kanagaraj Obaid Martha Aldosary +1 位作者 M.Ramasamy M.Vijayakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2291-2306,共16页
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ... The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation. 展开更多
关键词 Perturb and observe control algorithm fuzzy logic controller energy conversion efficiency maximum power point tracking thermoelectric generator
下载PDF
Sliding Mode Control with Perturbation Estimation and Hysteresis Compensator Based on Bouc-Wen Model in Tackling Fast-Varying Sinusoidal Position Control of a Piezoelectric Actuator 被引量:5
5
作者 GAN Minggang QIAO Zhi LI Yanlong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期367-381,共15页
In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuatio... In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior. 展开更多
关键词 Bouc-Wen model hysteresis compensator sliding mode control with perturbation estimation.
原文传递
Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks
6
作者 张化光 马铁东 +1 位作者 浮洁 佟绍成 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3742-3750,共9页
In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochasti... In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method. 展开更多
关键词 exponential synchronization chaotic delayed neural networks impulsive control stochastic perturbation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部