It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary l...It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
In this paper,we study the singular perturbation of boundary value problem of systems for quasilinear ordinary differential equations:x'=j(i,x,y,ε),εy'=g(t,x,y,ε)y'+h(t,x,y,ε),y(0,ε)=A(ε),y(0,ε)=B(...In this paper,we study the singular perturbation of boundary value problem of systems for quasilinear ordinary differential equations:x'=j(i,x,y,ε),εy'=g(t,x,y,ε)y'+h(t,x,y,ε),y(0,ε)=A(ε),y(0,ε)=B(ε),y(1,ε)=C(ε)where xf.y,h,A,B and C belong to Rn and a is a diagonal matrix.Under the appropriate assumptions,using the technique of diagonalization and the theory of differential inequalities we obtain the existence of solution and its componentwise uniformly valid asymptotic estimation.展开更多
In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore,...In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore, it is of significance in practice since perturbations are often not single in the time domain. Malkin proved a general theorem about thesubject. To apply the theorem, however, the user has to construct a Liapunov function which satisfies specified conditions and it is difficult to find such a function for nonlinear nonautonomous systems. In the light of the principle of Liapunov's indirect method, which is an effective method to decide the stability of nonlinear systems in the Liapunov sense, the authors have achieved several important conclusions expressed in the form of theorems to determine the stability of nonlinear nonautonomous systems under the frequently-acting perturbation.展开更多
The robust exponential stability of a class of discrete time impulsive switched systems with structure perturbations is studied. Based on the average dwell time concept and by dividing the total activation time into t...The robust exponential stability of a class of discrete time impulsive switched systems with structure perturbations is studied. Based on the average dwell time concept and by dividing the total activation time into the time with stable subsystems and the time with unstable subsystems, it is shown that if the average dwell time and the activation time ratio are properly large, the given switched system is robustly exponentially stable with a desired stability degree. Compared with the traditional Lyapunov methods, our layout is more clear and easy to carry out. Simulation results validate the correctness and effectiveness of the proposed algorithm.展开更多
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha...Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.展开更多
This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality ...This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability crite...A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
This article discusses the stability properties of impulsive solution for a class of variable delay and linear time-varying measure differential systems. By means of the techniques of constructing broken line functi...This article discusses the stability properties of impulsive solution for a class of variable delay and linear time-varying measure differential systems. By means of the techniques of constructing broken line function to overcome the difficulties in employing comparison principle and Lyapunov function, some criteria of global exponential asymptotic stability for the impulsive time-delay system are established. An example is given to illustrate the applicability of the obtained results.展开更多
In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razum...In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razumikhin techniques, some criteria are established and their applications to impulsive stochastic delay systems are proposed. An illustrative example shows the effectiveness of our results.展开更多
In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay a...In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay and degenerate neutral differential systems with delay.Also,we give an example to illustrate the main results.展开更多
In this paper, stability of time varying singular differential systems with delay is considered. Based on variation formula and Gronwall-Bellman integral inequality, we obtain the exponential estimation of the solutio...In this paper, stability of time varying singular differential systems with delay is considered. Based on variation formula and Gronwall-Bellman integral inequality, we obtain the exponential estimation of the solution and the sufficient conditions under which the considered system is stable and exponentially asymptotically stable. These results will be very useful to further research on Roust stability and control design of uncertain singular control systems with delay.展开更多
In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigat...In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigated. The asymptotic stability criteria for singular differential nonlinear systems with multiple time-varying delays are derived based on V-functional method and some analytical techniques, which are described as matrix equations or matrix inequalities. The results obtained are computationally flexible and efficient.展开更多
This work concerns the stability properties of impulsive solution for a class of variable delay and time-varying measure differential systems. By means of the techniques of constructing broken line function to overcom...This work concerns the stability properties of impulsive solution for a class of variable delay and time-varying measure differential systems. By means of the techniques of constructing broken line function to overcome the difficulties in employing comparison principle and Lyapunov function with discontinuous derivative, some criteria of global exponential asymptotic stability for the system are established. An example is given to illustrate the applicability of results obtained.展开更多
In this paper,the asymptotic stability of singular nonlinear differential systems with unbounded delays is considered.The stability criteria are derived based on a kind of Lyapunov-functional and some technique of mat...In this paper,the asymptotic stability of singular nonlinear differential systems with unbounded delays is considered.The stability criteria are derived based on a kind of Lyapunov-functional and some technique of matrix inequalities.The criteria are described as matrix equation and matrix inequalities,which are computationally flexible and efficient.Two examples are given to illustrate the results.展开更多
In this paper, we develop a new technique to study the stability of differential systems with finite delay, where the components of the state variable can be divided into m groups (1 ≤ m ≤ l), correspondingly, m fun...In this paper, we develop a new technique to study the stability of differential systems with finite delay, where the components of the state variable can be divided into m groups (1 ≤ m ≤ l), correspondingly, m functionals Vj(j = 1, 2,'''m ) are adopted, each W involves one of the m groups. In this way, to construct the suitable functionals for a given system is much easier, and the obtained conditions are less restrictive展开更多
The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possib...The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...展开更多
文摘It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
文摘In this paper,we study the singular perturbation of boundary value problem of systems for quasilinear ordinary differential equations:x'=j(i,x,y,ε),εy'=g(t,x,y,ε)y'+h(t,x,y,ε),y(0,ε)=A(ε),y(0,ε)=B(ε),y(1,ε)=C(ε)where xf.y,h,A,B and C belong to Rn and a is a diagonal matrix.Under the appropriate assumptions,using the technique of diagonalization and the theory of differential inequalities we obtain the existence of solution and its componentwise uniformly valid asymptotic estimation.
文摘In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore, it is of significance in practice since perturbations are often not single in the time domain. Malkin proved a general theorem about thesubject. To apply the theorem, however, the user has to construct a Liapunov function which satisfies specified conditions and it is difficult to find such a function for nonlinear nonautonomous systems. In the light of the principle of Liapunov's indirect method, which is an effective method to decide the stability of nonlinear systems in the Liapunov sense, the authors have achieved several important conclusions expressed in the form of theorems to determine the stability of nonlinear nonautonomous systems under the frequently-acting perturbation.
基金Supported by National Natural Science Foundation of P. R. China (60174042, 60304003, 60574007) Natural Science Foundation of Shandong Province (Y2003G02) Qufu Normal University Foundation (xj0511)
文摘The robust exponential stability of a class of discrete time impulsive switched systems with structure perturbations is studied. Based on the average dwell time concept and by dividing the total activation time into the time with stable subsystems and the time with unstable subsystems, it is shown that if the average dwell time and the activation time ratio are properly large, the given switched system is robustly exponentially stable with a desired stability degree. Compared with the traditional Lyapunov methods, our layout is more clear and easy to carry out. Simulation results validate the correctness and effectiveness of the proposed algorithm.
文摘Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.
基金supported by Natural Science Foundation of Jiangsu Province of China(No.BK2007016)Scientific Research and Development Program of the Higher Education Institutions of Shandong Province of China(No.J09LG58)
文摘This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
基金supported by NSFC (10871078)863 Program of China (2009AA044501)+1 种基金an Open Research Grant of the State Key Laboratory for Nonlinear Mechanics of CASGraduates' Innovation Fund of HUST (HF-08-02-2011-011)
文摘A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
文摘This article discusses the stability properties of impulsive solution for a class of variable delay and linear time-varying measure differential systems. By means of the techniques of constructing broken line function to overcome the difficulties in employing comparison principle and Lyapunov function, some criteria of global exponential asymptotic stability for the impulsive time-delay system are established. An example is given to illustrate the applicability of the obtained results.
基金supported by the National Natural Science Foundation of China(60874114)
文摘In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razumikhin techniques, some criteria are established and their applications to impulsive stochastic delay systems are proposed. An illustrative example shows the effectiveness of our results.
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China(205068)+1 种基金the Foundation of Education Department of Anhui Province (KJ2008B152)the Foundation of Innovation Group of Anhui University.
文摘In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay and degenerate neutral differential systems with delay.Also,we give an example to illustrate the main results.
基金Supported by the National Natural Science Foundation of China (No.10771001)the Key Program of Ministry of Education of China (No.205068)+1 种基金the Foundation of Education Department of Anhui Province (No.KJ2008B152)the Foundation of Innovation Team of Anhui University.
文摘In this paper, stability of time varying singular differential systems with delay is considered. Based on variation formula and Gronwall-Bellman integral inequality, we obtain the exponential estimation of the solution and the sufficient conditions under which the considered system is stable and exponentially asymptotically stable. These results will be very useful to further research on Roust stability and control design of uncertain singular control systems with delay.
基金Supported by the National Natural Science Foundation of China (Grant No.10771001)the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No.20093401110001)+3 种基金the Natural Science Key Foundation of Education Department of Anhui Province (Grant No.KJ2010ZD02)the Natural Science Foundation of Education Department of Anhui Province (Grant Nos.KJ2008B152 KJ2009B098)the Foundation of Innovation Team of Anhui University
文摘In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigated. The asymptotic stability criteria for singular differential nonlinear systems with multiple time-varying delays are derived based on V-functional method and some analytical techniques, which are described as matrix equations or matrix inequalities. The results obtained are computationally flexible and efficient.
文摘This work concerns the stability properties of impulsive solution for a class of variable delay and time-varying measure differential systems. By means of the techniques of constructing broken line function to overcome the difficulties in employing comparison principle and Lyapunov function with discontinuous derivative, some criteria of global exponential asymptotic stability for the system are established. An example is given to illustrate the applicability of results obtained.
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China (205068)
文摘In this paper,the asymptotic stability of singular nonlinear differential systems with unbounded delays is considered.The stability criteria are derived based on a kind of Lyapunov-functional and some technique of matrix inequalities.The criteria are described as matrix equation and matrix inequalities,which are computationally flexible and efficient.Two examples are given to illustrate the results.
基金the National Natural Science Foundations of China No.19831030.
文摘In this paper, we develop a new technique to study the stability of differential systems with finite delay, where the components of the state variable can be divided into m groups (1 ≤ m ≤ l), correspondingly, m functionals Vj(j = 1, 2,'''m ) are adopted, each W involves one of the m groups. In this way, to construct the suitable functionals for a given system is much easier, and the obtained conditions are less restrictive
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China (205068)the Foundation of Innovation Team of Anhui Univ
文摘The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...