This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t...This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly pertur...Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient.展开更多
A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order pro...A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.展开更多
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula...This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.展开更多
We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estima...We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estimate and give illustrative numerical example.展开更多
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,...This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.展开更多
In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element me...In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element method. Uniform convergence about small parameter is proved under a weaker smooth condition with respect to the coefficients of the equation. The schemes studied in refs. [1], [3], [4] and [51 belong to the cllass.展开更多
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t...In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do n...Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of ...This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.展开更多
This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element func...This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element functions in the part of bilinear form corresponding to the second-order differential operator by a suitable approximation. To give such an approximation, a convergent nonconforming element for the second-order problem is constructed. It is shown that the method converges uniformly in the perturbation parameter.展开更多
In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal co...In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates.展开更多
In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and giv...In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-HiUiard-type equation as a model problem.展开更多
In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges i...In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.展开更多
文摘This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
基金Project supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient.
文摘A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.
基金supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.
文摘We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estimate and give illustrative numerical example.
文摘This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
文摘In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element method. Uniform convergence about small parameter is proved under a weaker smooth condition with respect to the coefficients of the equation. The schemes studied in refs. [1], [3], [4] and [51 belong to the cllass.
文摘In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
文摘Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金The work of the first author was supported by the National Natural Science Foundation of China (10571006). The work of the second author was supported by National Science Foundation DMS-0209479 and DMS-0215392 and the Changjiang Professorship through Peking University.
文摘This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.
基金Acknowledgments. This work was supported by the National Natural Science Foundation of China (Project No. 10571006).
文摘This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element functions in the part of bilinear form corresponding to the second-order differential operator by a suitable approximation. To give such an approximation, a convergent nonconforming element for the second-order problem is constructed. It is shown that the method converges uniformly in the perturbation parameter.
基金the National Natural Science Foundation of China(Grant Nos.10771224,10601070)the Guangdong Provincial Natural Science Foundation of China(Grant No.05003308)+1 种基金MOE Project of Key Research Institute of Humanities and Social Sciences at UniversitiesChina-France-Russia Mathematics Collaboration(Grant No.34000-3275100)
文摘In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates.
基金supported by the National Natural Science Foundation of China (10571006)
文摘In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-HiUiard-type equation as a model problem.
文摘In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.