In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained f...We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.展开更多
Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studi...Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studied in detail.The results show that the interaction among four solitons mainly depends on the values of solution parameters;k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons;the pulse velocity and width mainly depend on the imaginary part of ki(i=1,2,3,4),while the pulse amplitude mainly depends on the real part of ki(i=1,2,3,4).展开更多
We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obt...We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.展开更多
Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-qui...Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.展开更多
The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processi...The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processing technology.In this paper,we start from the study of the variable-coefficient coupled higher-order nonlinear Schodinger equation(VCHNLSE),and obtain an analytical three-soliton solution of this equation.Based on the obtained solution,the interaction of the three optical solitons is explored when they are incident from different initial velocities and phases.When the higher-order dispersion and nonlinear functions are sinusoidal,hyperbolic secant,and hyperbolic tangent functions,the transmission properties of three optical solitons before and after interactions are discussed.Besides,this paper achieves effective regulation of amplitude and velocity of optical solitons as well as of the local state of interaction process,and interaction-free transmission of the three optical solitons is obtained with a small spacing.The relevant conclusions of the paper are of great significance in promoting the development of high-speed and large-capacity optical communication,optical signal processing,and optical computing.展开更多
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ...We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.展开更多
The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstl...The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein.展开更多
Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junction...Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.展开更多
Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper ar...Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper are the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients,which describe the effects of quintic nonlinearity for the ultrashort optical pulse propagation in a twin-core optical fiber or non-Kerr medium.Based on the integrable conditions,bilinear forms are derived,and dark-dark soliton solutions can be constructed in terms of the Gramian via the Kadomtsev-Petviashvili hierarchy reduction.Propagation and interaction of the dark-dark solitons are presented and discussed through the graphic analysis.With different values of the delayed nonlinear response effect b(z),where z represents direction of the propagation,the linear-and parabolic-shaped one dark-dark soltions can be derived.Interactions between the parabolic-and periodic-shaped two dark-dark solitons are presented with b(z)as the linear and periodic functions,respectively.Directions of velocities of the two dark-dark solitons vary with z and the amplitudes of the solitons remain unchanged can be observed.Interactions between the two dark-dark solitons of different types are displayed,and we observe that the velocity of one soliton is zero and direction of the velocity of the other soliton vary with z.We find that those interactions are elastic.展开更多
This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine a...This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine and rational sinh-cosh methods.The modulation instability analysis of the governing model is presented.By using the suitable values of the parameters involved,the 2-,3-dimensional and the contour graphs of some of the reported solutions are plotted.展开更多
The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lé...The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lévy index and the amplitudes of vector symmetric and antisymmetric solitons is investigated.Two components of vector symmetric and antisymmetric solitons show a positive and negative trend with the Lévy index,respectively.The stability intervals of these solitons and the propagation constants corresponding to the maximum and minimum instability growth rates are studied.Results indicate that vector symmetric solitons are more stable and have better interference resistance than vector antisymmetric solitons.展开更多
The dimensionless third-order nonlinear Schrodinger equation(alias the Hirota equation) is investigated via deep leaning neural networks. In this paper, we use the physics-informed neural networks(PINNs) deep learning...The dimensionless third-order nonlinear Schrodinger equation(alias the Hirota equation) is investigated via deep leaning neural networks. In this paper, we use the physics-informed neural networks(PINNs) deep learning method to explore the data-driven solutions(e.g. bright soliton,breather, and rogue waves) of the Hirota equation when the two types of the unperturbated and perturbated(a 2% noise) training data are considered. Moreover, we use the PINNs deep learning to study the data-driven discovery of parameters appearing in the Hirota equation with the aid of bright solitons.展开更多
By the use of an auxiliary equation, we find bright and dark optical soliton and other soliton solutions for the higher-order nonlinear Schrodinger equation (NLSE) with fourth-order dispersion (FOD), cubic-quintic ter...By the use of an auxiliary equation, we find bright and dark optical soliton and other soliton solutions for the higher-order nonlinear Schrodinger equation (NLSE) with fourth-order dispersion (FOD), cubic-quintic terms, self-steepening, and nonlinear dispersive terms. Moreover, we give the formation condition of the bright and dark solitons for this higher-order NLSE.展开更多
The(1+2)-dimensional chiral nonlinear Schr?dinger equation(2D-CNLSE)as a nonlinear evolution equation is considered and studied in a detailed manner.To this end,a complex transform is firstly adopted to arrive at the ...The(1+2)-dimensional chiral nonlinear Schr?dinger equation(2D-CNLSE)as a nonlinear evolution equation is considered and studied in a detailed manner.To this end,a complex transform is firstly adopted to arrive at the real and imaginary parts of the model,and then,the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE.The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions.展开更多
In this paper,the dynamics of the higher-order soliton solutions for the coupled mixed derivative nonlinear Schrodinger equation¨are investigated via generalized Darboux transformation.Given a pair of linearly in...In this paper,the dynamics of the higher-order soliton solutions for the coupled mixed derivative nonlinear Schrodinger equation¨are investigated via generalized Darboux transformation.Given a pair of linearly independent solutions of the Lax pair,the oneto three-soliton solutions are obtained via algebraic iteration.Furthermore,two and three solitons are respectively displayed via numerical simulation.Moreover,the dynamics of solitons are illustrated with corresponding evolution plots,such as elastic collisions,inelastic collisions,and bound states.It is found that there are some novel phenomena of interactions among solitons,which may provide a theoretical basis for studying optical solitons in experiments.展开更多
In nonlinear optical systems,optical solitons have the transmission properties of reducing error rate,improving system security and stability,and have important research significance in future research on all optical ...In nonlinear optical systems,optical solitons have the transmission properties of reducing error rate,improving system security and stability,and have important research significance in future research on all optical communication.This paper uses the bilinear method to obtain the two-soliton solutions of the nonlinear Schrödinger equation.By analyzing the relevant physical parameters in the obtained solutions,the interaction between optical solitons is optimized.The influence of the initial conditions on the interactions of the optical solitons is analyzed in detail,the reason why the interaction of the optical solitons is sensitive to the initial condition is discussed,and the interactions of the optical solitons are effectively weakened.The relevant results are beneficial for reducing the error rate and promoting the communication quality of the system.展开更多
In this work,a fourth-order numerical scheme in space and two second-order numerical schemes in both time and space are proposed for the derivative nonlinear Schrodinger equation.We verify the mass conservation for th...In this work,a fourth-order numerical scheme in space and two second-order numerical schemes in both time and space are proposed for the derivative nonlinear Schrodinger equation.We verify the mass conservation for the two-level implicit scheme.The influence on the soliton solution by adding a small random perturbation to the initial condition is discussed.The numerical experiments are given to test the accuracy order for different schemes,respectively.We also test the conservative property of mass and Hamiltonian for these schemes from the numerical point of view.展开更多
Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in som...Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in some cases,the soliton solutions to the nonlinear Schrodinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrodinger equation through approximation,although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference.The origin of the differences is also discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金the National Natural Science Foundation of China(Grant No.10971109)K.C.Wong Magna Fund in Ningbo University,China+1 种基金the Natural Science Foundation of Ningbo,China(Grant No.2011A610179)the DST,DAE-BRNS,UGC,CSIR,India
文摘We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.
基金National Natural Science Foundation of China(Grant No.11705108).
文摘Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studied in detail.The results show that the interaction among four solitons mainly depends on the values of solution parameters;k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons;the pulse velocity and width mainly depend on the imaginary part of ki(i=1,2,3,4),while the pulse amplitude mainly depends on the real part of ki(i=1,2,3,4).
基金Project supported by the National Natural Science Foundation of China(Grant No.11771151)the Guangdong Natural Science Foundation of China(Grant No.2017A030313008)+1 种基金the Guangzhou Science and Technology Program of China(Grant No.201904010362)the Fundamental Research Funds for the Central Universities of China(Grant No.2019MS110)
文摘We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.
文摘Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.
基金supported by the Scientific Research Foundation of Weifang University of Science and Technology(Grant Nos.KJRC2022002 and KJRC2023035).
文摘The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processing technology.In this paper,we start from the study of the variable-coefficient coupled higher-order nonlinear Schodinger equation(VCHNLSE),and obtain an analytical three-soliton solution of this equation.Based on the obtained solution,the interaction of the three optical solitons is explored when they are incident from different initial velocities and phases.When the higher-order dispersion and nonlinear functions are sinusoidal,hyperbolic secant,and hyperbolic tangent functions,the transmission properties of three optical solitons before and after interactions are discussed.Besides,this paper achieves effective regulation of amplitude and velocity of optical solitons as well as of the local state of interaction process,and interaction-free transmission of the three optical solitons is obtained with a small spacing.The relevant conclusions of the paper are of great significance in promoting the development of high-speed and large-capacity optical communication,optical signal processing,and optical computing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01)
文摘We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874324 and 11705164)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY17A040011,LY17F050011,and LR20A050001)+1 种基金the Foundation of “New Century 151 Talent Engineering” of Zhejiang Province of Chinathe Youth Talent Program of Zhejiang A&F University
文摘The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein.
基金supported by the National Natural Science Foundation of China under grant no.11905061by the Fundamental Research Funds for the Central Universities(No.9161718004)。
文摘Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.
基金the National Natural Science Foundation of China under Grant Nos.11772017,11805020,11272023 and 11471050the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper are the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients,which describe the effects of quintic nonlinearity for the ultrashort optical pulse propagation in a twin-core optical fiber or non-Kerr medium.Based on the integrable conditions,bilinear forms are derived,and dark-dark soliton solutions can be constructed in terms of the Gramian via the Kadomtsev-Petviashvili hierarchy reduction.Propagation and interaction of the dark-dark solitons are presented and discussed through the graphic analysis.With different values of the delayed nonlinear response effect b(z),where z represents direction of the propagation,the linear-and parabolic-shaped one dark-dark soltions can be derived.Interactions between the parabolic-and periodic-shaped two dark-dark solitons are presented with b(z)as the linear and periodic functions,respectively.Directions of velocities of the two dark-dark solitons vary with z and the amplitudes of the solitons remain unchanged can be observed.Interactions between the two dark-dark solitons of different types are displayed,and we observe that the velocity of one soliton is zero and direction of the velocity of the other soliton vary with z.We find that those interactions are elastic.
文摘This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine and rational sinh-cosh methods.The modulation instability analysis of the governing model is presented.By using the suitable values of the parameters involved,the 2-,3-dimensional and the contour graphs of some of the reported solutions are plotted.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LR20A050001)National Natural Science Foundation of China(No.12075210)the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No.2021FR0009)。
文摘The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lévy index and the amplitudes of vector symmetric and antisymmetric solitons is investigated.Two components of vector symmetric and antisymmetric solitons show a positive and negative trend with the Lévy index,respectively.The stability intervals of these solitons and the propagation constants corresponding to the maximum and minimum instability growth rates are studied.Results indicate that vector symmetric solitons are more stable and have better interference resistance than vector antisymmetric solitons.
基金supported by the National Natural Science Foundation of China(Nos.11925108 and 11731014)。
文摘The dimensionless third-order nonlinear Schrodinger equation(alias the Hirota equation) is investigated via deep leaning neural networks. In this paper, we use the physics-informed neural networks(PINNs) deep learning method to explore the data-driven solutions(e.g. bright soliton,breather, and rogue waves) of the Hirota equation when the two types of the unperturbated and perturbated(a 2% noise) training data are considered. Moreover, we use the PINNs deep learning to study the data-driven discovery of parameters appearing in the Hirota equation with the aid of bright solitons.
文摘By the use of an auxiliary equation, we find bright and dark optical soliton and other soliton solutions for the higher-order nonlinear Schrodinger equation (NLSE) with fourth-order dispersion (FOD), cubic-quintic terms, self-steepening, and nonlinear dispersive terms. Moreover, we give the formation condition of the bright and dark solitons for this higher-order NLSE.
文摘The(1+2)-dimensional chiral nonlinear Schr?dinger equation(2D-CNLSE)as a nonlinear evolution equation is considered and studied in a detailed manner.To this end,a complex transform is firstly adopted to arrive at the real and imaginary parts of the model,and then,the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE.The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions.
基金supported by the National Natural Science Foundation of China(Grant No.11602232)Shanxi Natural Science Foundation(Grant No.201901D111179)the Fund for Shanxi(Grant 1331KIRT).
文摘In this paper,the dynamics of the higher-order soliton solutions for the coupled mixed derivative nonlinear Schrodinger equation¨are investigated via generalized Darboux transformation.Given a pair of linearly independent solutions of the Lax pair,the oneto three-soliton solutions are obtained via algebraic iteration.Furthermore,two and three solitons are respectively displayed via numerical simulation.Moreover,the dynamics of solitons are illustrated with corresponding evolution plots,such as elastic collisions,inelastic collisions,and bound states.It is found that there are some novel phenomena of interactions among solitons,which may provide a theoretical basis for studying optical solitons in experiments.
基金Project supported by the National Natural Science Foundation of China(Grant No.11875005).
文摘In nonlinear optical systems,optical solitons have the transmission properties of reducing error rate,improving system security and stability,and have important research significance in future research on all optical communication.This paper uses the bilinear method to obtain the two-soliton solutions of the nonlinear Schrödinger equation.By analyzing the relevant physical parameters in the obtained solutions,the interaction between optical solitons is optimized.The influence of the initial conditions on the interactions of the optical solitons is analyzed in detail,the reason why the interaction of the optical solitons is sensitive to the initial condition is discussed,and the interactions of the optical solitons are effectively weakened.The relevant results are beneficial for reducing the error rate and promoting the communication quality of the system.
基金National Natural Science Foundation of China(No.11671044)Beijing Municipal Education Commission under Grant(No.PXM2016014224000028)the Science Challenge project(No.JCKY2016212A501).
文摘In this work,a fourth-order numerical scheme in space and two second-order numerical schemes in both time and space are proposed for the derivative nonlinear Schrodinger equation.We verify the mass conservation for the two-level implicit scheme.The influence on the soliton solution by adding a small random perturbation to the initial condition is discussed.The numerical experiments are given to test the accuracy order for different schemes,respectively.We also test the conservative property of mass and Hamiltonian for these schemes from the numerical point of view.
文摘Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in some cases,the soliton solutions to the nonlinear Schrodinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrodinger equation through approximation,although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference.The origin of the differences is also discussed.