Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution a...Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.展开更多
Based on the Kullback-Leibler distance and information distance, someinfluence measures for model perturbations and explanatory variablap ia reg,ressionmodels are proposed.The new influence measures can be used to ide...Based on the Kullback-Leibler distance and information distance, someinfluence measures for model perturbations and explanatory variablap ia reg,ressionmodels are proposed.The new influence measures can be used to identify influentialcases and to assess the effect of explanatory variables on the interested parametersThe method is adaptable for a variety of regression models.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters ...In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics,we attempt to find a way to fuse without using noise statistics.The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response(IFIR)filter.The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process,showing that a critical feature of the UFIR filter is inherited.One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method.It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions.Moreover,the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensur...System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensure requirements have been met.Multiple qualities are discussed in the literature of SoSA evaluation, while research on functionality is scarce. In order to assess SoSA functionality, an extended influence diagram(EID) is developed in this paper. Meanwhile, a simulation method is proposed to elicit the conditional probabilities in EID through designing and executing SoSA. An illustrative anti-missile architecture case is introduced for EID development, architecture design, and simulation.展开更多
Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respirat...Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respiratory resistance noninvasively and effortlessly. Methods: In a convenience sample of 398 patients undergoing pulmonary function testing, we compared routine spirometric indices (forced expired volume in 1 second (FEV1), peak expiratory flow (PEF)), and airways resistance (Raw-272 patients), to measures of respiratory resistance measured with the APD including inspiratory (IR), expiratory (ER) and averaged (AR) resistance. Results: Measures of lung function were significantly correlated (p 0.001). On regression analysis, between 7% - 17% of the variance (R2) for FEV1, PEF, and Raw was explained by APD measurements. Approximately 2/3 of the variance in FEV1 was explained by PEF measurements. Conclusions: APD measurements of lung function correlate with conventional measures. Future studies should be directed at exploring the use of the APD device in serial measures of lung function in patients with lung disease.展开更多
In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potentia...In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.展开更多
A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was ...A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.展开更多
In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distri...In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distribution. We will find the compact expression of the influence functions, which allow the quantification of the effect of an infinitesimal contamination of the probability of any pair of attributes of the bivariate random variable distributed according to the above-mentioned model. We prove that the only unbiased index is the chi square. In order to determine the indexes, which are less sensitive to contamination, we obtain the expressions of three synthetic measures of the influence function, which are the maximum contamination (gross sensitivity error), the mean square deviation and the variance. These results, even if don’t allow a definitive assessment of the overall optimum properties of the five indexes, as not all of them are unbiased, nevertheless they allow to appreciating the synthetic entity of the effect of the contaminations in the estimation of the parameter ρ of the bivariate Bernoulli distribution.展开更多
In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is ...In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is a bounded linear operator from X into a bigger space Xθ(not X),then the corresponding 2-order abstract Cauchy problem is uniformly well-posed.展开更多
Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction...Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.展开更多
The problem of real-time photorealistic imaging is discussed. New techniques for specifying free forms without their approximation by polygons are considered. Free forms based on the perturbation functions have an adv...The problem of real-time photorealistic imaging is discussed. New techniques for specifying free forms without their approximation by polygons are considered. Free forms based on the perturbation functions have an advantage of spline representation of surfaces, that is, a high degree of smoothness, and an advantage of arbitrary form for a small number of perturbation functions. Transformations of geometric objects are described for set-theoretic operations, projections, offsetting, and metamorphosis. We propose a GPU solution to render freeform objects at high frame rates.展开更多
A conservative transport operator in space (v//,r) and moment equations are used to describe the combined effects of a stochastic magnetic field and a radial ambipolar electric field on the electrons. The transport o...A conservative transport operator in space (v//,r) and moment equations are used to describe the combined effects of a stochastic magnetic field and a radial ambipolar electric field on the electrons. The transport operator is coupled with Fokker-planck and Ohmic heating terms to compute the electron distribution function. A physical picture exhibits the possible importance of the turbulent magnetic field on the suprathermal electrons, which may be concerned with plasma confinement.展开更多
The necessity for understanding normal human cognitive processes and behavior, and themechanisrns which result in dysfunction in these processes are dependant on utilization of a suitable animal model. In order to dev...The necessity for understanding normal human cognitive processes and behavior, and themechanisrns which result in dysfunction in these processes are dependant on utilization of a suitable animal model. In order to develop pharmaceutical agents to alleviate mental disturbances and enable the individual to cope within the norms of society, it is incumbent upon investigators to choose a species in which pharmacokinetic principles are established and resemble those of hurnans. The choice of rats in cognition research studies has specific advantages in that these anirnals possess similar pharrnacodynamic parameters to hurnans. Further advantages include availability, low cost, ease of breeding, maintenance and an extensive literature database which enable comparisons to present findings. However, there are substantial differences in the perforrnance of various rat strains in tasks of learning, memory, attention, and responses to stress or drugs. In addition to rat strain, quantity of thed also exerts profound consequences on animal behavior. The aim of this review is to demonstrate that there are differences in the central nervous systern responsivencess of rat strains to chemicals and these could be related to factors such as source of supplier, type and quantity of feed, or season of the year. It is also evident that the genotype differs amongst strains and this may be responsible for the observed differences in CNS sensitivity to chemicals. Strain differences must be identified and taken into consideration in interpretation of assessrnent of neurobehavioural functions. It is also incumbent upon the investigators to utilize healthy (diet-controlled) animal models.展开更多
We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and ...We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.展开更多
Objective To investigate hidden blood loss after various types of intertrochanteric fractures and to determine whether oral iron supplementations is benefical for the postoperative functional recovery in elderly patie...Objective To investigate hidden blood loss after various types of intertrochanteric fractures and to determine whether oral iron supplementations is benefical for the postoperative functional recovery in elderly patients.Methods From展开更多
In order to improve the prediction precision of the safety performance function (SPF) of freeway basic segments, design and crash data of 640 segments are collected from different institutions. Three negative binomi...In order to improve the prediction precision of the safety performance function (SPF) of freeway basic segments, design and crash data of 640 segments are collected from different institutions. Three negative binomial (NB) regression models and three generalized negative binomial (GNB) regression models are built to prove that the interactive influence of explanatory variables plays an important role in fitting goodness. The effective use of the GNB model in analyzing the interactive influence of explanatory variables and predicting freeway basic segments is demonstrated. Among six models, the two models (one is the NB model and the other is the GNB model. ) which consider the interactive influence of the annual average daily traffic (AADT) and length are more reasonable for predicting results. Furthermore, a comprehensive study is carried out to prove that when considering the interactive influence, the NB and GNB models have almost the same fitting performance in estimating the crashes, among which the GNB model is slightly better for prediction performance.展开更多
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(41974127,42174147).References。
文摘Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.
文摘Based on the Kullback-Leibler distance and information distance, someinfluence measures for model perturbations and explanatory variablap ia reg,ressionmodels are proposed.The new influence measures can be used to identify influentialcases and to assess the effect of explanatory variables on the interested parametersThe method is adaptable for a variety of regression models.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金supported in part by the National Natural Science Foundation of China(61973136,61991402,61833007)the Natural Science Foundation of Jiangsu Province(BK20211528)。
文摘In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics,we attempt to find a way to fuse without using noise statistics.The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response(IFIR)filter.The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process,showing that a critical feature of the UFIR filter is inherited.One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method.It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions.Moreover,the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
基金supported by the National Natural Science Foundation of China(71571189)
文摘System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensure requirements have been met.Multiple qualities are discussed in the literature of SoSA evaluation, while research on functionality is scarce. In order to assess SoSA functionality, an extended influence diagram(EID) is developed in this paper. Meanwhile, a simulation method is proposed to elicit the conditional probabilities in EID through designing and executing SoSA. An illustrative anti-missile architecture case is introduced for EID development, architecture design, and simulation.
文摘Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respiratory resistance noninvasively and effortlessly. Methods: In a convenience sample of 398 patients undergoing pulmonary function testing, we compared routine spirometric indices (forced expired volume in 1 second (FEV1), peak expiratory flow (PEF)), and airways resistance (Raw-272 patients), to measures of respiratory resistance measured with the APD including inspiratory (IR), expiratory (ER) and averaged (AR) resistance. Results: Measures of lung function were significantly correlated (p 0.001). On regression analysis, between 7% - 17% of the variance (R2) for FEV1, PEF, and Raw was explained by APD measurements. Approximately 2/3 of the variance in FEV1 was explained by PEF measurements. Conclusions: APD measurements of lung function correlate with conventional measures. Future studies should be directed at exploring the use of the APD device in serial measures of lung function in patients with lung disease.
基金The project was supported by the Fund for Scientific Research in Flanders (FWO-Vlaanderen) for Research Grant G021115N.
文摘In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
文摘A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.
文摘In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distribution. We will find the compact expression of the influence functions, which allow the quantification of the effect of an infinitesimal contamination of the probability of any pair of attributes of the bivariate random variable distributed according to the above-mentioned model. We prove that the only unbiased index is the chi square. In order to determine the indexes, which are less sensitive to contamination, we obtain the expressions of three synthetic measures of the influence function, which are the maximum contamination (gross sensitivity error), the mean square deviation and the variance. These results, even if don’t allow a definitive assessment of the overall optimum properties of the five indexes, as not all of them are unbiased, nevertheless they allow to appreciating the synthetic entity of the effect of the contaminations in the estimation of the parameter ρ of the bivariate Bernoulli distribution.
文摘In this paper,we proved that the infinitesimal generator of a strongly continuous cosine operator function is preserved under the time-dependent perturbation in the sun-reflexive case,where the perturbed operator is a bounded linear operator from X into a bigger space Xθ(not X),then the corresponding 2-order abstract Cauchy problem is uniformly well-posed.
基金This paper is funded by the national key project"The Belt and Road"talent recruitment project named:Comparison of Mining Subsidence Research in China and Poland(No.G2017001).Part of the research was financed from the Grant for Statutory Research AGH-University of Science and Technology in Krakow,Poland No.16.16.150.545.
文摘Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.
文摘The problem of real-time photorealistic imaging is discussed. New techniques for specifying free forms without their approximation by polygons are considered. Free forms based on the perturbation functions have an advantage of spline representation of surfaces, that is, a high degree of smoothness, and an advantage of arbitrary form for a small number of perturbation functions. Transformations of geometric objects are described for set-theoretic operations, projections, offsetting, and metamorphosis. We propose a GPU solution to render freeform objects at high frame rates.
文摘A conservative transport operator in space (v//,r) and moment equations are used to describe the combined effects of a stochastic magnetic field and a radial ambipolar electric field on the electrons. The transport operator is coupled with Fokker-planck and Ohmic heating terms to compute the electron distribution function. A physical picture exhibits the possible importance of the turbulent magnetic field on the suprathermal electrons, which may be concerned with plasma confinement.
文摘The necessity for understanding normal human cognitive processes and behavior, and themechanisrns which result in dysfunction in these processes are dependant on utilization of a suitable animal model. In order to develop pharmaceutical agents to alleviate mental disturbances and enable the individual to cope within the norms of society, it is incumbent upon investigators to choose a species in which pharmacokinetic principles are established and resemble those of hurnans. The choice of rats in cognition research studies has specific advantages in that these anirnals possess similar pharrnacodynamic parameters to hurnans. Further advantages include availability, low cost, ease of breeding, maintenance and an extensive literature database which enable comparisons to present findings. However, there are substantial differences in the perforrnance of various rat strains in tasks of learning, memory, attention, and responses to stress or drugs. In addition to rat strain, quantity of thed also exerts profound consequences on animal behavior. The aim of this review is to demonstrate that there are differences in the central nervous systern responsivencess of rat strains to chemicals and these could be related to factors such as source of supplier, type and quantity of feed, or season of the year. It is also evident that the genotype differs amongst strains and this may be responsible for the observed differences in CNS sensitivity to chemicals. Strain differences must be identified and taken into consideration in interpretation of assessrnent of neurobehavioural functions. It is also incumbent upon the investigators to utilize healthy (diet-controlled) animal models.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50971101 and 51074127)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)of China(Grant No.SKLSP201010)
文摘We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.
文摘Objective To investigate hidden blood loss after various types of intertrochanteric fractures and to determine whether oral iron supplementations is benefical for the postoperative functional recovery in elderly patients.Methods From
基金The National Natural Science Foundation of China(No.51408229,51278202)the Program of the Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University(No.K201204)the Science and Technology Program of Guangdong Communication Department(No.2013-02-068)
文摘In order to improve the prediction precision of the safety performance function (SPF) of freeway basic segments, design and crash data of 640 segments are collected from different institutions. Three negative binomial (NB) regression models and three generalized negative binomial (GNB) regression models are built to prove that the interactive influence of explanatory variables plays an important role in fitting goodness. The effective use of the GNB model in analyzing the interactive influence of explanatory variables and predicting freeway basic segments is demonstrated. Among six models, the two models (one is the NB model and the other is the GNB model. ) which consider the interactive influence of the annual average daily traffic (AADT) and length are more reasonable for predicting results. Furthermore, a comprehensive study is carried out to prove that when considering the interactive influence, the NB and GNB models have almost the same fitting performance in estimating the crashes, among which the GNB model is slightly better for prediction performance.