A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w...Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.展开更多
Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on sp...Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.展开更多
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical...It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of elemen...The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate, even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements, meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.展开更多
Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscilla...Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.展开更多
It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty eff...It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.展开更多
We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral grap...We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.展开更多
In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when com...In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when compared to the Small-Signal-Stability Constrained Optimal Power Flow(SSSC-OPF)approach.This is achieved using the Matrix Perturbation Theory(MPT)to deal with the 2nd order sensitivity matrices,and the establishment of an optimal corrective control model to regulate the output power of generating units to improve the minimum damping ratio of power grids.Finally,simulation results on the IEEE 9-bus,IEEE 39-bus and a China 634-bus systems show that the proposed approach can significantly reduce the burden of deviation calculation,while enhancing power system stability and ensuring calculation accuracy.展开更多
Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eige...Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.展开更多
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
文摘Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.
基金supported partly by the National Natural Science Foundation of China(60872022)the"973"Program of China(2008CB317109),the Science Foundation of Guangxi Province of China(0991241)the Foundation of Guangxi Key Laboratory of Information and Communication(10903).
文摘Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.
基金supported by the National Natural Science Foundation of China(61171127)
文摘It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
基金Project supported by the National Natural Science Foundation of China (Nos.59805001,50475150 and 10332010)the Key Science and Technology Research Project of Ministry of Education of China (No. 104060)+1 种基金the Program for New Century Excellent Talents in University (No.050284)the Post-Doctoral Science Foundation of China (No.2004036110)
文摘The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate, even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements, meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.
基金supported by the National Natural Science Foundation of China (Grant No. 50595412)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB219700)
文摘Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.
基金supported by the AVIC Research Project(Grant No.cxy2012BH07)the National Natural Science Foundation of China(Grant Nos.10872017,90816024,10876100)+1 种基金the Defense Industrial Technology Development Program(Grant Nos.A2120110001,B2120110011,A082013-2001)"111" Project(Grant No.B07009)
文摘It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.
基金supported by the National Natural Science Foundation of China (No.60375003)the Aeronautics and Astronautics Basal Science Foundation of China (No.03I53059)the Science and Technology Innovation Foundation of Northwestern Polytechnical University (No.2007KJ01033)
文摘We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51577085).
文摘In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when compared to the Small-Signal-Stability Constrained Optimal Power Flow(SSSC-OPF)approach.This is achieved using the Matrix Perturbation Theory(MPT)to deal with the 2nd order sensitivity matrices,and the establishment of an optimal corrective control model to regulate the output power of generating units to improve the minimum damping ratio of power grids.Finally,simulation results on the IEEE 9-bus,IEEE 39-bus and a China 634-bus systems show that the proposed approach can significantly reduce the burden of deviation calculation,while enhancing power system stability and ensuring calculation accuracy.
基金supported in part by the National Science Foundation of United States(NSF)(Grant No.0844707)in part by the International S&T Cooperation Program of China(ISTCP)(Grant No.2013DFA60930)
文摘Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.