This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to t...This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to the linear part is done. The exact expression of the function is given, moreover the range of parameter for which it has constant sign is obtained. Using this, some existence results for the nonlinear problem are deduced from monotone iterative techniques, the classical Krasnoselski fixed point theorem or by application of recent fixed point theorems that combine both theories.展开更多
The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolati...The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.展开更多
Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Br...Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.展开更多
Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functi...Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functions series method is high, the calculus of their coefficients needs specific recurrences in each case. To avoid this inconvenience, the T-functions series method is transformed into a multistep method whose coefficients are calculated using recurrence procedures. These methods are convergent and have the same properties to the T-functions series method. Numerical examples already used by other authors are presented, such as a stiff problem, a Duffing oscillator and an equatorial satellite problem when the perturbation comes from zonal harmonics J2.展开更多
With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods fo...With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.展开更多
基金partially supported by Ministerio de Educación y Ciencia,Spain,and FEDER,Projects MTM2013-43014-P and MTM 2016-75140-P
文摘This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to the linear part is done. The exact expression of the function is given, moreover the range of parameter for which it has constant sign is obtained. Using this, some existence results for the nonlinear problem are deduced from monotone iterative techniques, the classical Krasnoselski fixed point theorem or by application of recent fixed point theorems that combine both theories.
基金supported by the National Natural Science Foundation of China(Nos.12172154 and 11925204)the 111 Project of China(No.B14044)the National Key Project of China(No.GJXM92579)。
文摘The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.
文摘Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.
文摘Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functions series method is high, the calculus of their coefficients needs specific recurrences in each case. To avoid this inconvenience, the T-functions series method is transformed into a multistep method whose coefficients are calculated using recurrence procedures. These methods are convergent and have the same properties to the T-functions series method. Numerical examples already used by other authors are presented, such as a stiff problem, a Duffing oscillator and an equatorial satellite problem when the perturbation comes from zonal harmonics J2.
文摘With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.