The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via th...The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.展开更多
New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known...New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known results.展开更多
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi...This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.展开更多
A class of second-order nonlinear damped perturbed differential equations is considered and its oscillation theorems are studied.These theorems are more general and deal with the cases which are not covered by the kno...A class of second-order nonlinear damped perturbed differential equations is considered and its oscillation theorems are studied.These theorems are more general and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify some existing results.An example is given to verify the results.展开更多
By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the ...By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symm...Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.展开更多
This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutio...This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutions with small initial data.Second,we derive the temporal decay estimate of the solution in the L^(2)-norm,where to prove the result,we need to overcome the difficulty caused by the presence of linear terms from perturbation.Finally,the decay rate in L^(2) space for higher order derivatives of the solution is established.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
The large time behavior of solutions to the two-dimensional perturbed Hasegawa- Mima equation with large initial data is studied in this paper. Based on the time-frequency decomposition and the method of Green functio...The large time behavior of solutions to the two-dimensional perturbed Hasegawa- Mima equation with large initial data is studied in this paper. Based on the time-frequency decomposition and the method of Green function, we not only obtain the optimal decay rate but also establish the pointwise estimate of global classical solutions.展开更多
Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure. The result shows, as the bifurc...Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure. The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions. Furthermore, when the distance from bifurcation is of comparable order ε2 (|ε|≤1), the first two terms in e-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method. Such information is useful to the bifurcation control.展开更多
We investigate the one-dimensional nonlinear SchrSdinger equation with a perturbation of polynomial type. The approximate symmetries and approximate symmetry reduction equations are obtained with the approximate symme...We investigate the one-dimensional nonlinear SchrSdinger equation with a perturbation of polynomial type. The approximate symmetries and approximate symmetry reduction equations are obtained with the approximate symmetry perturbation theory.展开更多
The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor ...The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.展开更多
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal cohere...The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. Bu...So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. But to our knowledge, this method for other types of perturbed nonlinear evolution equations has still been lacking. In this paper, Lou's direct perturbation method is applied to the study of perturbed complex Burgers equation. By this method, we calculate not only the zero-order adiabatic solution, but also the first order modification.展开更多
In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e m...In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.展开更多
In the paper by using the spline wavelet basis to constructr the approximate inertial manifold, we study the longtime behavior of perturbed perodic KdV equation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007, the China Postdoctoral Science Foundation, and the Natural Science Foundation of Shanxi Province under Grant No. 2005A13
文摘The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.
基金the Science Foundation of Hunan Educational Committee
文摘New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known results.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371098 and 10447007the Natural Science Foundation of Shanxi Province of China under Grant No.2005A13
文摘This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. A011403)the Young Teachers Science Foundation of Beijing University of Civil Engineering and Architecture,China (Grant No. 100804107)
文摘A class of second-order nonlinear damped perturbed differential equations is considered and its oscillation theorems are studied.These theorems are more general and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify some existing results.An example is given to verify the results.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575087 and the Natural Science Foundation of Zhejiang Province of China under Grant No. 102053
文摘By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
基金The project supported by National Natural Science Foundations of China under Grant Nos. 10735030, 10475055, and 90503006; the Natural Science Research Plan in Shaanxi Province under Grant No. SJ08A09; the Research Fund of Postdoctoral of China under Grant No. 20070410727;the Research Found of Shaanxi Normal University
文摘Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.
基金The second author is supported by the National Natural Science Foundation of China(11471103).
文摘This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutions with small initial data.Second,we derive the temporal decay estimate of the solution in the L^(2)-norm,where to prove the result,we need to overcome the difficulty caused by the presence of linear terms from perturbation.Finally,the decay rate in L^(2) space for higher order derivatives of the solution is established.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金supported by the National Natural Science Foundation of China(11231006)
文摘The large time behavior of solutions to the two-dimensional perturbed Hasegawa- Mima equation with large initial data is studied in this paper. Based on the time-frequency decomposition and the method of Green function, we not only obtain the optimal decay rate but also establish the pointwise estimate of global classical solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.10672053
文摘Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure. The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions. Furthermore, when the distance from bifurcation is of comparable order ε2 (|ε|≤1), the first two terms in e-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method. Such information is useful to the bifurcation control.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875106)
文摘We investigate the one-dimensional nonlinear SchrSdinger equation with a perturbation of polynomial type. The approximate symmetries and approximate symmetry reduction equations are obtained with the approximate symmetry perturbation theory.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,10475055,10675065,and 90503006National Basic Research Program of China (973 Program 2007CB814800)
文摘The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.
基金supported by the National Natural Science Foundations of China (Grant Nos 10735030,10475055,10675065 and 90503006)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金PCSIRT (Grant No IRT0734)the Research Fund of Postdoctoral of China (Grant No 20070410727)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120)
文摘The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575087 and 10875106)
文摘So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. But to our knowledge, this method for other types of perturbed nonlinear evolution equations has still been lacking. In this paper, Lou's direct perturbation method is applied to the study of perturbed complex Burgers equation. By this method, we calculate not only the zero-order adiabatic solution, but also the first order modification.
基金0ne of the authors (H.Z. Liu) would like to express his sincere thanks to Dr. Shou-Feng Shen for his continuous encouragement and warm-hearted help.
文摘In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
文摘In the paper by using the spline wavelet basis to constructr the approximate inertial manifold, we study the longtime behavior of perturbed perodic KdV equation.