The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacemen...The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacementratios. The axial force, skin friction, and settlement were evaluated using a model test to assess the performance ofthe pervious concrete pile composite foundation. When the replacement ratio was reduced from 9.26% to 2.32%,the characteristic bearing capacity value was only 14%. Therefore, it may be unreasonable to use the settlementratio method to evaluate this composite foundation's bearing capacity in a model test. Appropriate loading cansignificantly improve the bearing capacity of a pervious concrete pile composite foundation with a lowreplacement ratio. The pile–soil stress ratio exhibited different decreasing ranges in the later loading stage. As theload increased, the axial force of the pervious concrete piles was small and nonobvious, and the average sidefriction resistance of the piles in the foundation with a lower replacement ratio slowly increased.展开更多
基金the support from the National Natural Science Foundation of China(Grant No.41977241).
文摘The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacementratios. The axial force, skin friction, and settlement were evaluated using a model test to assess the performance ofthe pervious concrete pile composite foundation. When the replacement ratio was reduced from 9.26% to 2.32%,the characteristic bearing capacity value was only 14%. Therefore, it may be unreasonable to use the settlementratio method to evaluate this composite foundation's bearing capacity in a model test. Appropriate loading cansignificantly improve the bearing capacity of a pervious concrete pile composite foundation with a lowreplacement ratio. The pile–soil stress ratio exhibited different decreasing ranges in the later loading stage. As theload increased, the axial force of the pervious concrete piles was small and nonobvious, and the average sidefriction resistance of the piles in the foundation with a lower replacement ratio slowly increased.