Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific samp...Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.展开更多
We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment...We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.展开更多
The risk of drinking water is greatly concerned because of the large amount of pesticide applied to paddy field and the contamination of drinking water sources due to the runoff. A mathematical model is developed, ba...The risk of drinking water is greatly concerned because of the large amount of pesticide applied to paddy field and the contamination of drinking water sources due to the runoff. A mathematical model is developed, based on the mass balance, to predict the fate of paddy field pesticides from application, runoff and mixing in a river, taking account of the physical chemical properties and processes of volatilization, degradation, adsorption and desorption. The model is applied to a river basin in Japan to estimate the contaminant level of several popularly used pesticides at the water intakes. The health risk in drinking water induced by each pesticide concerned is estimated and evaluated by comparing with the acceptable daily intake values(ADI) and with that induced by trihalomethanes. An index to evaluate the total risk of all pesticides appearing in water is proposed. The methods for risk management are also discussed.展开更多
Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs...Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs) or to the persistence in the environment and in the form of pesticide residues from human activities. The objective of this work is to evaluate, on the one hand, the levels of identified pesticide residues and, on the other hand, those of researched TMEs (lead, cadmium, mercury and arsenic) in the waters of ponds used for fish farming in Zépréguhé, a locality located 9 km from the town of Daloa in the centre-west of Côte d’Ivoire. The dosage of the samples carried out by means of a gas chromatograph coupled to a mass spectrometer (GC/MS) made it possible to detect nine (9) pesticide molecules, including eight (8) organochlorines and a single molecule from the pyrethroid family, obtained from the detection limit of 0.006 μg/L and the quantification limit of 0.018 μg/L. The maximum average concentration was obtained with α-endosulfan for a content reaching 0.8038 μg/L and well above the maximum admissible concentration of 0.1 μg/L. The TMEs were quantified using an atomic absorption spectrophotometer (AAS). Arsenic is the most abundant metal with an average concentration of 9.497 μg/L. With the exception of lead, these measured levels are above the acceptable limit values for freshwater. This study showed that human activities such as the use of fertilisers and plant protection products in plantations, sand extraction and road traffic have a negative impact on the quality of the water in ponds used for fish breeding.展开更多
The present study was aimed to validate an analytical method for the quantification of 19 organochlorine and 2 synthetic pyrethroid pesticide residues in water samples using modified quick, easy, cheap, effective, rug...The present study was aimed to validate an analytical method for the quantification of 19 organochlorine and 2 synthetic pyrethroid pesticide residues in water samples using modified quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction and Gas Chromatography coupled with Electron Capture Detector (ECD). The selected pesticide residues were determined by in-house validated method. The analytical method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD) and limit of quantification (LOQ). The average recoveries of the selected pesticides ranged from 78% to 117% with RSDr ≤ 12% in two fortification levels of 0.02 and 0.1 mg/L. The linearity was ≥0.995 for all of the selected pesticides. The LOD ranged from 0.003 to 0.006 mg/L and the LOQ was 0.02 mg/L for all the selected analytes. This method was applied satisfactorily for the residue analysis of 108 water samples collected from nine districts of Bangladesh. Among the analyzed samples, only 4 had cypermethrin residues (0.026 mg/L, 0.034 mg/L, 0.045 mg/L and 0.05 mg/L). The level of detected cypermethrin residues were above the WHO recommended guide line values of water quality.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of ...Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.展开更多
In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of c...In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.展开更多
In the process of the development of agriculture, pesticides have become an important tool as an insecticide to kill the insect from plant for boosting food production. Therefore the insecticides/pesticides and herbic...In the process of the development of agriculture, pesticides have become an important tool as an insecticide to kill the insect from plant for boosting food production. Therefore the insecticides/pesticides and herbicides have been used in India for agriculture setting. In this connection a sensitive method for the quantification of 5 pesticides in drinking water samples to the μgL–1 level has been developed. The paper also describes the effect of dissociation energy on ion formation and sensitivity of pesticides in water samples. The structure, ion formations, distribution of base peak and fragmentation schemes were correlated with the different dissociation energies. The new ion was obtained at different mass to charge ratio, which was the characteristic ion peak of targeted pesticide. Additionally, a simple solvent lyophilization followed by selective analysis using a liquid chromatography-mass spectrometry method was used. This method was accurate (≥98%) as it possesses limits of detection in the 6 - 38 ngL–1 range, and the percentage relative standard deviations are less than 8.62% at the low μgL–1 end of the method’s linear range. The percentage recovery of all the pesticides at the 0.1 μgL–1 levels of detection ranges from 92% - 104%. This method was used for the quantification of pesticides in water samples collected from different parts from urban city of Hyderabad, India. In this study, 13 water samples were analyzed in which all samples showed detectable level of the malathion and alachlor. The concentration of pesticides ranged from 0.004 μgL–1 to 0.691 μgL–1 exceeded to the maximum residual limit of Indian standard.展开更多
Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrien...Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrients, trace metals, bacteria, and legacy organic compounds (organochlorine pesticides) in the recycled water from five commercial nursery ponds in Florida. The pH of recycled water at all sites was 8.1 - 9.3, except one site (6.5), while the electrical conductivity (EC) was 0.31 - 0.36 dS/m. Concentrations of trace metals in recycled water were low: Fe (0.125 - 0.367 mg/L), Al (0.126 - 0.169 mg/L), B (0.104 - 0.153 mg/L), Zn (0.123 - 0.211 mg/L), and Mn (<0.111 mg/L). Total phosphorus (P) and total nitrogen (N) in the recycled water were 0.35 - 1.00 mg/L and 1.56 - 2.30 mg/L, respectively. Among organochlorine pesticides, endrin aldehyde was the only pesticide detected in all nursery recycled water ponds, with concentrations from 0.04 to 0.10 μg/L at four sites and 1.62 μg/L at one site. Other detected pesticides in recycled water were methoxychlor, endosulfan sulfate, dichlorodiphenyldichloroethylene (DDE) and α-chlorodane, with concentrations < 0.20 μg/L. Total coliforms and Escherichia coli (E. coli) in recycled water were 20 - 50 colony forming units (CFU)/100 mL. We conclude that the concentrations of various inorganic and organic compounds in recycled water are very low and do not appear to be problematic for irrigation purposes in Florida’s nursery recycled water ponds.展开更多
An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban a...An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban agglomerate in Asia. Concentration of both anionic synthetic detergents and organochlorine pesticide resi-dues analysed from 54 and 19 sampling stations covering groundwater and surface water sources respec-tively, are generally found to be within the tolerance limit for human consumption. The concentration of synthetic detergent ranges from 0.084 to 0.425mg/l. Residues of organochlorine pesticides are analysed from different sources like tanks, lakes, rivers and groundwater. Lindane (0.01-0.43μg/l) and DDT (0.03-0.65 μg/l) are the most widely detected pesticide residues. Howerer, the two have not exceeded the limits for drinking anywhere. High value of aldrin and dieldrin (0.9μg/l) is obtained in the river Hugli at Barakpur-Seoraphuli, 20 km north of Kolkata. Likewise high value of Heptachloreis detected in a canal water sample at Palta (0.05 μg/l), a suburban area. Seasonally, the pesticide concentration in surface water is maximum during winter due to their higher application and minimum during monsoon. In groundwater, however, this relationship is reverse due to higher infiltration of surface water during monsoon.展开更多
Twenty-two pesticides and metabolites, selected on the basis of regional priority lists, were surveyed in thirty Italian mineral waters springs for three years by a procedure based on solid phase extraction in combina...Twenty-two pesticides and metabolites, selected on the basis of regional priority lists, were surveyed in thirty Italian mineral waters springs for three years by a procedure based on solid phase extraction in combination with gas chromatography coupled with mass spectrometry detection. The procedure proved to be simple, sensitive and reliable, the limits of detection and relative standard deviations were respectively in the range of 0.002 - 0.04 μg/L and 3% - 7%, recoveries ranged from 86% to 105% at the European Union Maximum Acceptable Concentration (MAC). Pesticide residues were detected in just one of the ninety water samples analyzed but no one exceeding the MAC. These results demonstrate the good quality of Italian mineral waters, not forgetting the need of constant revision and update of the priority list of pollutants.展开更多
The presence of pesticides in the environment is of great concern due to their persistent nature and chronic adverse effect on human health and the environment. Water bodies are subject to pollution by organochlorine ...The presence of pesticides in the environment is of great concern due to their persistent nature and chronic adverse effect on human health and the environment. Water bodies are subject to pollution by organochlorine pesticides, especially in developing countries, where water pollution is a key sustainability challenge. Hence, activated carbon is considered a universal adsorbent for the removal of organochlorine pollutants from water. Activated carbon from Acatia etbaica was prepared using traditional kilns with low investment costs. Pesticides such as aldrin, dieldrin and DDT were selected for adsorption because of their common usage in agricultural and malaria control activities and may occur in high concentrations in surface waters that are used as drinking water sources. The effect of the adsorbent dose and initial concentration were investigated. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir and Freundlich isotherm models. The Freundlich model gave the best correlation with the experimental data. Activated carbon prepared from Acacia etbaica was found to be an effective and low-cost alternative for the removal of organochlorine pesticides from aqueous solutions. The preparation method allows the use of this material by local communities for effective remediation of pollution by pesticides.展开更多
Pesticides having different structures and biological activities are widely used for agricultural and non-agricultural purposes throughout the world. Monitoring of pesticides in water contribute to the protection of h...Pesticides having different structures and biological activities are widely used for agricultural and non-agricultural purposes throughout the world. Monitoring of pesticides in water contribute to the protection of human health and the protection of environment too. Analysis of a big number of water samples each year is revealed a clear image for pollution by pesticides. Twenty-four pesticides are monitored in drinking, surface and ground waters of Cyprus according to the European legislation. During the last 4 years (2013-2016) 2860 samples were analysing using two different techniques of extraction and determination. Pesticides were separated at two groups according to their polarity and stability and determined using GC/MS and UPLC/MS/MS. The limit of quantification is 0.01 μg/L for those determined with UPLC/MS/MS and 0.01 - 0.03 μg/L for those determined with GC/MS. The results revealed that only 1.5% of the samples analysed found to contain some of these compounds at concentration over the limit of quantification. Only nine of the pesticides were found at the samples and those with the highest frequency were Chloropyrifos, Prosulfocarb and Simazine.展开更多
Background: The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, rodenticides, nematicides, and plant growth regulators in order to control weeds, pests and diseases...Background: The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, rodenticides, nematicides, and plant growth regulators in order to control weeds, pests and diseases in crops as well as for health care of humans and animals. The positive aspect of pesticide use renders enhanced crop/food productivity and drastic reduction of vector-borne diseases. On the other hand, excess use of fertilizers threatens the groundwater and surface water on a large scale. Agricultural runoff is surface water leaving cultivated fields as a result of receiving water in excess of the infiltration rate of the soil. Pesticides can enter water through surface runoff or through leaching. These two fundamental processes are linked to the earth’s hydrologic cycle. Methodology: Data for the present study were collected from two villages, Arnetu of Patiala District and Wallipur of Ludhiana District of Punjab, India, from the year 2017 to 2018. Data on the frequency of pesticide use, demographic profile, and the concentration of heavy metals in edible vegetables were collected by using structured schedule, case study, and in-depth interview from a total of 250 respondents. Elemental analysis of vegetable samples was carried out with the help of Energy Dispersive X-Ray Florescence (EDXRF). Objectives: a) assessment of pesticide use and its frequency among the farmers of the studied areas;b) to ascertain potential health risk of pesticide concentrations in runoff from field-sized agricultural watersheds and in rivers and streams and its impact on the residents of the field area (Figure 1 & Figure 2);c) to collect cases of effected families. Results: It was reported that 80% and 81% of respondents from Arnetu and Wallipur village respectively used pesticide in agricultural fields. The frequency of pesticide use was 60% of the respondents from Arnetu and 70% from Wallipur village reported that their use of pesticides depends upon the type of crops they have cultivated. The area observed leaching (vertical downward displacement of pesticides through the soil profile and the unsaturated zone, and finally to groundwater) of fertilizers and pesticides frequently occurring due to rain or due to irrigation water. It had an indirect impact on the health of the residents. The results of the analytical analysis of vegetables suggested that all the vegetables. Were contaminated maximally by some of the heavy metals. Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Lead (Pb), Cadmium (Cd) and Uranium (U) had been found to be present in higher amounts. The concentrations of these heavy metals in all the vegetable samples were higher than the (US EPA/IS/WHO/BIS) guideline values. The prevalence of cancer and Hepatitis C was found in Wallipur village where 81% respondents supported pesticide application in their field. Conclusions: Thus, the present study reflects the adverse health effects of the pesticides’ use on groundwater which in turn indirectly is affecting human health. The entire realm of pesticide use reveals a certain un-certainty of situations in which the residents of studied areas are undergoing life-long exposures.展开更多
Objectives: To conduct health risk assessment of drinking water pesticide residues and its annual trend analysis in Shenzhen City. Methods: The samples of product water, pipe water and secondary supply water from 2011...Objectives: To conduct health risk assessment of drinking water pesticide residues and its annual trend analysis in Shenzhen City. Methods: The samples of product water, pipe water and secondary supply water from 2011 to 2013 were collected and analyzed. The evaluation models of health risk assessments for children and adults on the 12 non-carcinogenic materials (namely heptachlor, pentachlorophenol, hexachlorocyclohexane, hexachlorobenzene, DDT, malathion, glyphosate, dimethoate, bentazone, atrazine, chlorothalonil, furadan) were recommended by the U.S. Environmental Protection Agency (US EPA). Results: The results showed that the maximums of the measured indicators in the above were controlled in accordance with the National Health Standards (GB5749-2006) published by Ministry of Health in China. The adults and children’s health indices (HIs) of the 12 non-carcinogenic materials were greater than 1 (2.323 - 6.312). Dimethoate residue in factory and peripheral water was the largest risks of harm among the non-carcinogenic pollutants measured. And its HIi (Its Hli) was also greater than 1 (1.995 - 5.094) and followed by hexachlorobenzene and heptachlor. Annual rising trend on health risk of the 12 pesticide residues indicated that their HIT on adults was 2323. 18 × 10-3 in 2011, 2340. 18 × 10-3 in 2012 and 2431. 97 × 10-3 in 2013, and HIT on children was 2965. 07 × 10-3 in 2011, 2986. 77 × 10-3 in 2012 and 3103. 93 × 10-3 in 2013, respectively. This study also suggested that the average risk of peripheral water samples (HIT was equal to 2619. 64 × 10-3) was greater than the factory samples’ (HIT was the same as 2366. 92 × 10-3), and the children’s health risk was greater than the adults’. Conclusions: Health risks of drinking water pesticide residues in Shenzhen have exceeded the threshold values. The dimethoate was the main hazard and had been rising annually, and the children’s health risk was greater than the adults’.展开更多
The aims of the work were to study the current quality of the water in Lake DOHOU used for drinking water supply through several physical, chemical analyses and using water quality indices (WQI). In addition, the ques...The aims of the work were to study the current quality of the water in Lake DOHOU used for drinking water supply through several physical, chemical analyses and using water quality indices (WQI). In addition, the question was whether the populations are at risk after drinking water of lake following a reduction of 50% and 75% in the median and maximum values of pesticides. Thus, the results of the pesticide monitoring program were incorporated into probabilistic human health risk assessment exercises. Water samples were collected over a period of one year. Pesticides were subjected to solid phase extraction and then analyzed using gas chromatography coupled to tandem mass spectroscopy. The other parameters were measured according to conventional methods. The results showed that the most frequently detected pesticides were aldicarb (79%), simazine (79%) and monolinuron (44%). They also showed the mean values of concentrations exceeding 1.5 μg/L. Metoxuron detected at a frequency of 29% showed the maximum average concentration (13.46 μg/L). Nearly 98% of the sampling points had at least one substance with an average concentration above the quality standard (0.1 μg/L) and 80% did not meet the total concentration standards. Cumulative risk quotient estimates after 50% or 75% abatement for frequently identified pesticides were greater than unity when extreme?values for adults and children were considered. To determine the suitability of water for aquatic life, drinking water consumption and drinking water production, the water quality index (WQI), the heavy metal pollution (HPI) and the heavy metal evaluation (HEI) were calculated. The poor quality of the water was mainly related to pesticides, organic matter and microbiological parameters. Most of the nutrients and metals studied were often below the standards of drinking water and aquatic life. The Water Quality Index (WQI) has shown that water quality is degrading for these three modes of use and ranges from poor to marginal. The coupling of monitoring data with probabilistic estimates of human risks could be used by the Ivorian authorities to propose effective pollution management plans.展开更多
The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, ro-denticides, molluscicides, nematicides, and plant growth regulators in order to control weeds, pests and dis-...The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, ro-denticides, molluscicides, nematicides, and plant growth regulators in order to control weeds, pests and dis-eases in crops as well as for health care of humans and animals. The positive aspect of application of pesti-cides renders enhanced crop/food productivity and drastic reduction of vector-borne diseases. However, their unregulated and indiscriminate applications have raised serious concerns about the entire environment in general and the health of humans, birds and animals in particular. Despite ban on application of some of the environmentally persistent and least biodegradable pesticides (like organochlorines) in many countries, their use is ever on rise. Pesticides cause serious health hazards to living systems because of their rapid fat solu-bility and bioaccumulation in non-target organisms. Even at low concentration, pesticides may exert several adverse effects, which could be monitored at biochemical, molecular or behavioral levels. The factors af-fecting water pollution with pesticides and their residues include drainage, rainfall, microbial activity, soil temperature, treatment surface, application rate as well as the solubility, mobility and half life of pesticides. In India organochlorine insecticides such as DDT and HCH constitute more than 70% of the pesticides used at present. Reports from Delhi, Bhopal and other cities and some rural areas have indicated presence of sig-nificant level of pesticides in fresh water systems as well as bottled drinking mineral water samples. The ef-fects of pesticides pollution in riverine systems and drinking water in India has been discussed in this review.展开更多
文摘Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.
基金funded by the National Natural Science Foundation of China(4147117341671200+1 种基金U1603242)the Specific Scientific Research Fund from the Ministry of Environmental Protection of the People’s Republic of China(201309041)
文摘We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.
文摘The risk of drinking water is greatly concerned because of the large amount of pesticide applied to paddy field and the contamination of drinking water sources due to the runoff. A mathematical model is developed, based on the mass balance, to predict the fate of paddy field pesticides from application, runoff and mixing in a river, taking account of the physical chemical properties and processes of volatilization, degradation, adsorption and desorption. The model is applied to a river basin in Japan to estimate the contaminant level of several popularly used pesticides at the water intakes. The health risk in drinking water induced by each pesticide concerned is estimated and evaluated by comparing with the acceptable daily intake values(ADI) and with that induced by trihalomethanes. An index to evaluate the total risk of all pesticides appearing in water is proposed. The methods for risk management are also discussed.
文摘Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs) or to the persistence in the environment and in the form of pesticide residues from human activities. The objective of this work is to evaluate, on the one hand, the levels of identified pesticide residues and, on the other hand, those of researched TMEs (lead, cadmium, mercury and arsenic) in the waters of ponds used for fish farming in Zépréguhé, a locality located 9 km from the town of Daloa in the centre-west of Côte d’Ivoire. The dosage of the samples carried out by means of a gas chromatograph coupled to a mass spectrometer (GC/MS) made it possible to detect nine (9) pesticide molecules, including eight (8) organochlorines and a single molecule from the pyrethroid family, obtained from the detection limit of 0.006 μg/L and the quantification limit of 0.018 μg/L. The maximum average concentration was obtained with α-endosulfan for a content reaching 0.8038 μg/L and well above the maximum admissible concentration of 0.1 μg/L. The TMEs were quantified using an atomic absorption spectrophotometer (AAS). Arsenic is the most abundant metal with an average concentration of 9.497 μg/L. With the exception of lead, these measured levels are above the acceptable limit values for freshwater. This study showed that human activities such as the use of fertilisers and plant protection products in plantations, sand extraction and road traffic have a negative impact on the quality of the water in ponds used for fish breeding.
文摘The present study was aimed to validate an analytical method for the quantification of 19 organochlorine and 2 synthetic pyrethroid pesticide residues in water samples using modified quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction and Gas Chromatography coupled with Electron Capture Detector (ECD). The selected pesticide residues were determined by in-house validated method. The analytical method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD) and limit of quantification (LOQ). The average recoveries of the selected pesticides ranged from 78% to 117% with RSDr ≤ 12% in two fortification levels of 0.02 and 0.1 mg/L. The linearity was ≥0.995 for all of the selected pesticides. The LOD ranged from 0.003 to 0.006 mg/L and the LOQ was 0.02 mg/L for all the selected analytes. This method was applied satisfactorily for the residue analysis of 108 water samples collected from nine districts of Bangladesh. Among the analyzed samples, only 4 had cypermethrin residues (0.026 mg/L, 0.034 mg/L, 0.045 mg/L and 0.05 mg/L). The level of detected cypermethrin residues were above the WHO recommended guide line values of water quality.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金Supported by Science and Technology Program of Guangxi Province(GK AD19245169,GK AD18281072,GK AA17202037,GK AB16380164)。
文摘Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.
文摘In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.
文摘In the process of the development of agriculture, pesticides have become an important tool as an insecticide to kill the insect from plant for boosting food production. Therefore the insecticides/pesticides and herbicides have been used in India for agriculture setting. In this connection a sensitive method for the quantification of 5 pesticides in drinking water samples to the μgL–1 level has been developed. The paper also describes the effect of dissociation energy on ion formation and sensitivity of pesticides in water samples. The structure, ion formations, distribution of base peak and fragmentation schemes were correlated with the different dissociation energies. The new ion was obtained at different mass to charge ratio, which was the characteristic ion peak of targeted pesticide. Additionally, a simple solvent lyophilization followed by selective analysis using a liquid chromatography-mass spectrometry method was used. This method was accurate (≥98%) as it possesses limits of detection in the 6 - 38 ngL–1 range, and the percentage relative standard deviations are less than 8.62% at the low μgL–1 end of the method’s linear range. The percentage recovery of all the pesticides at the 0.1 μgL–1 levels of detection ranges from 92% - 104%. This method was used for the quantification of pesticides in water samples collected from different parts from urban city of Hyderabad, India. In this study, 13 water samples were analyzed in which all samples showed detectable level of the malathion and alachlor. The concentration of pesticides ranged from 0.004 μgL–1 to 0.691 μgL–1 exceeded to the maximum residual limit of Indian standard.
文摘Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrients, trace metals, bacteria, and legacy organic compounds (organochlorine pesticides) in the recycled water from five commercial nursery ponds in Florida. The pH of recycled water at all sites was 8.1 - 9.3, except one site (6.5), while the electrical conductivity (EC) was 0.31 - 0.36 dS/m. Concentrations of trace metals in recycled water were low: Fe (0.125 - 0.367 mg/L), Al (0.126 - 0.169 mg/L), B (0.104 - 0.153 mg/L), Zn (0.123 - 0.211 mg/L), and Mn (<0.111 mg/L). Total phosphorus (P) and total nitrogen (N) in the recycled water were 0.35 - 1.00 mg/L and 1.56 - 2.30 mg/L, respectively. Among organochlorine pesticides, endrin aldehyde was the only pesticide detected in all nursery recycled water ponds, with concentrations from 0.04 to 0.10 μg/L at four sites and 1.62 μg/L at one site. Other detected pesticides in recycled water were methoxychlor, endosulfan sulfate, dichlorodiphenyldichloroethylene (DDE) and α-chlorodane, with concentrations < 0.20 μg/L. Total coliforms and Escherichia coli (E. coli) in recycled water were 20 - 50 colony forming units (CFU)/100 mL. We conclude that the concentrations of various inorganic and organic compounds in recycled water are very low and do not appear to be problematic for irrigation purposes in Florida’s nursery recycled water ponds.
文摘An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban agglomerate in Asia. Concentration of both anionic synthetic detergents and organochlorine pesticide resi-dues analysed from 54 and 19 sampling stations covering groundwater and surface water sources respec-tively, are generally found to be within the tolerance limit for human consumption. The concentration of synthetic detergent ranges from 0.084 to 0.425mg/l. Residues of organochlorine pesticides are analysed from different sources like tanks, lakes, rivers and groundwater. Lindane (0.01-0.43μg/l) and DDT (0.03-0.65 μg/l) are the most widely detected pesticide residues. Howerer, the two have not exceeded the limits for drinking anywhere. High value of aldrin and dieldrin (0.9μg/l) is obtained in the river Hugli at Barakpur-Seoraphuli, 20 km north of Kolkata. Likewise high value of Heptachloreis detected in a canal water sample at Palta (0.05 μg/l), a suburban area. Seasonally, the pesticide concentration in surface water is maximum during winter due to their higher application and minimum during monsoon. In groundwater, however, this relationship is reverse due to higher infiltration of surface water during monsoon.
文摘Twenty-two pesticides and metabolites, selected on the basis of regional priority lists, were surveyed in thirty Italian mineral waters springs for three years by a procedure based on solid phase extraction in combination with gas chromatography coupled with mass spectrometry detection. The procedure proved to be simple, sensitive and reliable, the limits of detection and relative standard deviations were respectively in the range of 0.002 - 0.04 μg/L and 3% - 7%, recoveries ranged from 86% to 105% at the European Union Maximum Acceptable Concentration (MAC). Pesticide residues were detected in just one of the ninety water samples analyzed but no one exceeding the MAC. These results demonstrate the good quality of Italian mineral waters, not forgetting the need of constant revision and update of the priority list of pollutants.
文摘The presence of pesticides in the environment is of great concern due to their persistent nature and chronic adverse effect on human health and the environment. Water bodies are subject to pollution by organochlorine pesticides, especially in developing countries, where water pollution is a key sustainability challenge. Hence, activated carbon is considered a universal adsorbent for the removal of organochlorine pollutants from water. Activated carbon from Acatia etbaica was prepared using traditional kilns with low investment costs. Pesticides such as aldrin, dieldrin and DDT were selected for adsorption because of their common usage in agricultural and malaria control activities and may occur in high concentrations in surface waters that are used as drinking water sources. The effect of the adsorbent dose and initial concentration were investigated. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir and Freundlich isotherm models. The Freundlich model gave the best correlation with the experimental data. Activated carbon prepared from Acacia etbaica was found to be an effective and low-cost alternative for the removal of organochlorine pesticides from aqueous solutions. The preparation method allows the use of this material by local communities for effective remediation of pollution by pesticides.
文摘Pesticides having different structures and biological activities are widely used for agricultural and non-agricultural purposes throughout the world. Monitoring of pesticides in water contribute to the protection of human health and the protection of environment too. Analysis of a big number of water samples each year is revealed a clear image for pollution by pesticides. Twenty-four pesticides are monitored in drinking, surface and ground waters of Cyprus according to the European legislation. During the last 4 years (2013-2016) 2860 samples were analysing using two different techniques of extraction and determination. Pesticides were separated at two groups according to their polarity and stability and determined using GC/MS and UPLC/MS/MS. The limit of quantification is 0.01 μg/L for those determined with UPLC/MS/MS and 0.01 - 0.03 μg/L for those determined with GC/MS. The results revealed that only 1.5% of the samples analysed found to contain some of these compounds at concentration over the limit of quantification. Only nine of the pesticides were found at the samples and those with the highest frequency were Chloropyrifos, Prosulfocarb and Simazine.
文摘Background: The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, rodenticides, nematicides, and plant growth regulators in order to control weeds, pests and diseases in crops as well as for health care of humans and animals. The positive aspect of pesticide use renders enhanced crop/food productivity and drastic reduction of vector-borne diseases. On the other hand, excess use of fertilizers threatens the groundwater and surface water on a large scale. Agricultural runoff is surface water leaving cultivated fields as a result of receiving water in excess of the infiltration rate of the soil. Pesticides can enter water through surface runoff or through leaching. These two fundamental processes are linked to the earth’s hydrologic cycle. Methodology: Data for the present study were collected from two villages, Arnetu of Patiala District and Wallipur of Ludhiana District of Punjab, India, from the year 2017 to 2018. Data on the frequency of pesticide use, demographic profile, and the concentration of heavy metals in edible vegetables were collected by using structured schedule, case study, and in-depth interview from a total of 250 respondents. Elemental analysis of vegetable samples was carried out with the help of Energy Dispersive X-Ray Florescence (EDXRF). Objectives: a) assessment of pesticide use and its frequency among the farmers of the studied areas;b) to ascertain potential health risk of pesticide concentrations in runoff from field-sized agricultural watersheds and in rivers and streams and its impact on the residents of the field area (Figure 1 & Figure 2);c) to collect cases of effected families. Results: It was reported that 80% and 81% of respondents from Arnetu and Wallipur village respectively used pesticide in agricultural fields. The frequency of pesticide use was 60% of the respondents from Arnetu and 70% from Wallipur village reported that their use of pesticides depends upon the type of crops they have cultivated. The area observed leaching (vertical downward displacement of pesticides through the soil profile and the unsaturated zone, and finally to groundwater) of fertilizers and pesticides frequently occurring due to rain or due to irrigation water. It had an indirect impact on the health of the residents. The results of the analytical analysis of vegetables suggested that all the vegetables. Were contaminated maximally by some of the heavy metals. Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Lead (Pb), Cadmium (Cd) and Uranium (U) had been found to be present in higher amounts. The concentrations of these heavy metals in all the vegetable samples were higher than the (US EPA/IS/WHO/BIS) guideline values. The prevalence of cancer and Hepatitis C was found in Wallipur village where 81% respondents supported pesticide application in their field. Conclusions: Thus, the present study reflects the adverse health effects of the pesticides’ use on groundwater which in turn indirectly is affecting human health. The entire realm of pesticide use reveals a certain un-certainty of situations in which the residents of studied areas are undergoing life-long exposures.
文摘Objectives: To conduct health risk assessment of drinking water pesticide residues and its annual trend analysis in Shenzhen City. Methods: The samples of product water, pipe water and secondary supply water from 2011 to 2013 were collected and analyzed. The evaluation models of health risk assessments for children and adults on the 12 non-carcinogenic materials (namely heptachlor, pentachlorophenol, hexachlorocyclohexane, hexachlorobenzene, DDT, malathion, glyphosate, dimethoate, bentazone, atrazine, chlorothalonil, furadan) were recommended by the U.S. Environmental Protection Agency (US EPA). Results: The results showed that the maximums of the measured indicators in the above were controlled in accordance with the National Health Standards (GB5749-2006) published by Ministry of Health in China. The adults and children’s health indices (HIs) of the 12 non-carcinogenic materials were greater than 1 (2.323 - 6.312). Dimethoate residue in factory and peripheral water was the largest risks of harm among the non-carcinogenic pollutants measured. And its HIi (Its Hli) was also greater than 1 (1.995 - 5.094) and followed by hexachlorobenzene and heptachlor. Annual rising trend on health risk of the 12 pesticide residues indicated that their HIT on adults was 2323. 18 × 10-3 in 2011, 2340. 18 × 10-3 in 2012 and 2431. 97 × 10-3 in 2013, and HIT on children was 2965. 07 × 10-3 in 2011, 2986. 77 × 10-3 in 2012 and 3103. 93 × 10-3 in 2013, respectively. This study also suggested that the average risk of peripheral water samples (HIT was equal to 2619. 64 × 10-3) was greater than the factory samples’ (HIT was the same as 2366. 92 × 10-3), and the children’s health risk was greater than the adults’. Conclusions: Health risks of drinking water pesticide residues in Shenzhen have exceeded the threshold values. The dimethoate was the main hazard and had been rising annually, and the children’s health risk was greater than the adults’.
文摘The aims of the work were to study the current quality of the water in Lake DOHOU used for drinking water supply through several physical, chemical analyses and using water quality indices (WQI). In addition, the question was whether the populations are at risk after drinking water of lake following a reduction of 50% and 75% in the median and maximum values of pesticides. Thus, the results of the pesticide monitoring program were incorporated into probabilistic human health risk assessment exercises. Water samples were collected over a period of one year. Pesticides were subjected to solid phase extraction and then analyzed using gas chromatography coupled to tandem mass spectroscopy. The other parameters were measured according to conventional methods. The results showed that the most frequently detected pesticides were aldicarb (79%), simazine (79%) and monolinuron (44%). They also showed the mean values of concentrations exceeding 1.5 μg/L. Metoxuron detected at a frequency of 29% showed the maximum average concentration (13.46 μg/L). Nearly 98% of the sampling points had at least one substance with an average concentration above the quality standard (0.1 μg/L) and 80% did not meet the total concentration standards. Cumulative risk quotient estimates after 50% or 75% abatement for frequently identified pesticides were greater than unity when extreme?values for adults and children were considered. To determine the suitability of water for aquatic life, drinking water consumption and drinking water production, the water quality index (WQI), the heavy metal pollution (HPI) and the heavy metal evaluation (HEI) were calculated. The poor quality of the water was mainly related to pesticides, organic matter and microbiological parameters. Most of the nutrients and metals studied were often below the standards of drinking water and aquatic life. The Water Quality Index (WQI) has shown that water quality is degrading for these three modes of use and ranges from poor to marginal. The coupling of monitoring data with probabilistic estimates of human risks could be used by the Ivorian authorities to propose effective pollution management plans.
文摘The pesticides belong to a category of chemicals used worldwide as herbicides, insecticides, fungicides, ro-denticides, molluscicides, nematicides, and plant growth regulators in order to control weeds, pests and dis-eases in crops as well as for health care of humans and animals. The positive aspect of application of pesti-cides renders enhanced crop/food productivity and drastic reduction of vector-borne diseases. However, their unregulated and indiscriminate applications have raised serious concerns about the entire environment in general and the health of humans, birds and animals in particular. Despite ban on application of some of the environmentally persistent and least biodegradable pesticides (like organochlorines) in many countries, their use is ever on rise. Pesticides cause serious health hazards to living systems because of their rapid fat solu-bility and bioaccumulation in non-target organisms. Even at low concentration, pesticides may exert several adverse effects, which could be monitored at biochemical, molecular or behavioral levels. The factors af-fecting water pollution with pesticides and their residues include drainage, rainfall, microbial activity, soil temperature, treatment surface, application rate as well as the solubility, mobility and half life of pesticides. In India organochlorine insecticides such as DDT and HCH constitute more than 70% of the pesticides used at present. Reports from Delhi, Bhopal and other cities and some rural areas have indicated presence of sig-nificant level of pesticides in fresh water systems as well as bottled drinking mineral water samples. The ef-fects of pesticides pollution in riverine systems and drinking water in India has been discussed in this review.