In order to determine the impact depth of a conical projectile impacting a thin plate at high oblique angle, the residual velocity of the projectile after penetrating must be known. Based on the petal failure mode of ...In order to determine the impact depth of a conical projectile impacting a thin plate at high oblique angle, the residual velocity of the projectile after penetrating must be known. Based on the petal failure mode of the conical projectile impacting the thin plate at high oblique angle, the energy consumption mode of the target was determined. During the perforation process, the energy consumption of the target was completed by the saucerization, the power work of the petals, the propagation of radial cracks and petal bending. The energy formula was deduced for each energy dissipation mode and the energy consumed in the impact process was determined. The residual velocity and the ballistic limit velocity of the projectile were deduced by energy conservation principle. Comparison of the analytical results of the residual velocity to the numerical results demonstrates the accuracy and reliability of the analytical formula.展开更多
基金the National Defense Basic Research Foundation of China(No.A1420080184)
文摘In order to determine the impact depth of a conical projectile impacting a thin plate at high oblique angle, the residual velocity of the projectile after penetrating must be known. Based on the petal failure mode of the conical projectile impacting the thin plate at high oblique angle, the energy consumption mode of the target was determined. During the perforation process, the energy consumption of the target was completed by the saucerization, the power work of the petals, the propagation of radial cracks and petal bending. The energy formula was deduced for each energy dissipation mode and the energy consumed in the impact process was determined. The residual velocity and the ballistic limit velocity of the projectile were deduced by energy conservation principle. Comparison of the analytical results of the residual velocity to the numerical results demonstrates the accuracy and reliability of the analytical formula.