Even though the ophiolite sequence has been disturbed by tectonism and metamorphism, the ultramafic rocks, the gabbro, the diabase and the basalt of the Animaqen ophiolite have been proved to be respectively the metam...Even though the ophiolite sequence has been disturbed by tectonism and metamorphism, the ultramafic rocks, the gabbro, the diabase and the basalt of the Animaqen ophiolite have been proved to be respectively the metamorphic peridotite and the ultramafic cumulate, the mafic cumulate, the sheeted dike and the mafic extrusive rocks of the ophiolite suite based on the petrochemistry. The Animaqen ophiolite zone represents the location of the ancient plate suture line.展开更多
Based on studies on more than 40 alkali-rich intrusions in China, rocks of this family are divided into three groups (alkali granite, syenite and nepheline syenite) and their petrological and petrochemical characters ...Based on studies on more than 40 alkali-rich intrusions in China, rocks of this family are divided into three groups (alkali granite, syenite and nepheline syenite) and their petrological and petrochemical characters are discussed. These alkali-rich rocks can be assigned to 6 rock assemblages characterized by different petrogenesis. Alkali-rich rocks are distributed in linear pattern controlled by deep fault. Genetically, they are characterized by a deep source and emplacement at small depth. Their petrochemistry depends to a great extent on the degree of contamination by the lower crust. The alkali granite is the most, and the miaskite nepheline syenite the least, contaminated.展开更多
South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui g...South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.展开更多
The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The ma...The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks.展开更多
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The...The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
Based on the data from typical core sampling, combined with K Ar dating, petrochemistry ,trace elemental geochemistry and isotopic compositions of the Mesozoic Cenozoic volcanic rock in the Huanghua basin, Bohai regio...Based on the data from typical core sampling, combined with K Ar dating, petrochemistry ,trace elemental geochemistry and isotopic compositions of the Mesozoic Cenozoic volcanic rock in the Huanghua basin, Bohai region, the geochemical features of the volcanic rock were studied. The rocks fall into four groups: Cenozoic basalt,Mesozoic late Cretaceous basaltic trachy andesite, Mesozoic late Cretaceous trachy dacite and liparite,and Mesozoic early Triassic dacite. The distribution pattern of the main elemental abundance of late Mesozoic shows a typical bimodal.Chronologically,for the volcanic rock,the amount of SiO 2 decreases gradually,the contents of Fe 2O 3,FeO,CaO,MgO,TiO 2,P 2O 5 and MnO increase little by little.The Cenozoic basalt is derived from the asthenospheric mantle.The late Cretaceous basaltic trachy andesite is derived from the enriched lithospheric mantle.In late Cretaceous and early Palaeogene,the felsic volcanic rock may be derived from fractional melting of the crust.展开更多
Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry...Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry of magmatic rocks further indicate that there were really a Late Paleozoic rift valley in Chabu\|Chasang area, and no so\|called Paleo\|Tethys suture zone existed there. The rift initially split in early Carboniferous, access the peak in Lower Permian, is closed and folded during Late Permian. The volcanic rocks composed of mainly basalts, a small amount of basaltic andesites and andesites, are zonally distributed, and occur alternately with flysch or flyschoid sandstones, slates, pebbled slates, radiolarian cherts and carbonate rocks. The sedimentary facies change rapidly toward both sides and show rapid deposits of proximal gravity flow.展开更多
The Precambrian greywacke of Ribandar-Chimbel belonging to the Sanvordem Formation of the Goa Group, India, has been studied for petrography and analyzed for major trace elements. The greywacke is characterized by ang...The Precambrian greywacke of Ribandar-Chimbel belonging to the Sanvordem Formation of the Goa Group, India, has been studied for petrography and analyzed for major trace elements. The greywacke is characterized by angular to sub-round grains of quartz, feldspar, biotite, chlorite and clay minerals. The abundance of clay in the matrix seems to have influenced the Al2O3 content and the K20/Al2O3 ratio. The variation diagrams indicate a decreasing trend of TiO2, Al2O3, Fe2O3 and MgO; whereas Na2O and CaO exhibit a scatter which could be a result of the variable presence of feldspar within the sediments. The immobile elements, vanadium (25 to 144 ppm), nickel (up to 107 ppm) and chromium (up to 184 ppm), reflect abundance of clay minerals. The greywacke shows strongly fractionated REE patterns with LaN/YbN = 8 to 26 and with higher total REE abundances (up to 245 ppm). The low REE enrichment and depletion in heavier REE with prominent negative Eu anomaly (Eu/Eu^*= 0.54 to 0.79) suggest a derivation of the greywacke from an old upper continental crust composed chiefly of felsic components. Petrological evidence and geochemical data suggest that the deposition of the greywacke largely took place in a deep to shallow basin that progressively chang- ed from that of a continental island arc to an active continental setting.展开更多
The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ra...The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.展开更多
The geochemical and petrological features show that the Upper Ordovician marine volcanic rocks on north margin of Qaidam can be classified into three main kinds of petrotectonic assemblages. The three assemblages exhi...The geochemical and petrological features show that the Upper Ordovician marine volcanic rocks on north margin of Qaidam can be classified into three main kinds of petrotectonic assemblages. The three assemblages exhibit features of tectonic melange. And they indicate that there exists an ancient ocean basin on north margin of Qaidam during Late Ordovician period. At the last stage of Ordovician period, the ocean basin on north margin of Qaidam closed gradually, then Qaidam continental block subducted continually and Qilian continental block thrusted onto Qaidam continental block in the direction from north to south, formed the orogenic belt of continent to continent collision type. As a result, a three unit tectonic model is proposed. The three units are: the overlying Qilian crustal wedge, the collision tectonic melange belt on the north margin of Qaidam and the Qaidam underthrusted wedge.展开更多
The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can ...The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can be subdivided into two-mica leucogranite(TML), garnet-bearing leucogranite(GL), cordierite-bearing leucogranite(CL), and tourmaline-bearing leucogranite(TL). All of them are high-K, peraluminous, calc-alkalic to alkali-calcic rocks. They are enriched in light rare earth elements(LREE) and large ion lithophile elements(LILE), and show pronounced negative anomalies of Sr, Ba, K and Ti, but positive anomalies of Nb and Rb. LA-ICP-MS U-Pb zircon dating of one TML, one GL, and two CL samples yielded variable 206Pb/238U ages ranging from 23.6 to 16.1 Ma, indicating the Paiku leucogranites underwent a low degree of partial melting process. Combining with previous studies, we suggest the Paiku leucogranites were derived from partial melting of metasedimentary rocks of the Higher Himalayan Sequence(HHS). The GL and TL mainly resulted from the muscovite-dehydration melting, whereas the TML and CL were mainly derived from the biotite-dehydration melting. Finally, it is concluded that the Paiku leucogranites were probably formed during the subduction of the Indian crust.展开更多
Mafic xenoliths from Paleozoic Fuxian kimberlites (Liaoning Province) mainly in- clude garnet granulite, with minor pyroxene amphibolite, meta-gabbro and pyroxene syenite. The SiO2 contents of the xenoliths are from 4...Mafic xenoliths from Paleozoic Fuxian kimberlites (Liaoning Province) mainly in- clude garnet granulite, with minor pyroxene amphibolite, meta-gabbro and pyroxene syenite. The SiO2 contents of the xenoliths are from 47.3 wt% to 49.9 wt%. The granulites are mainly coarse-medium grained and reasonably with well-developed granoblastic (mostly polygonal) texture, contain the assemblage of garnet + plagioclase + pyroxene + K-feldspar ±phlogopite. The mineral assemblage of the amphibolites is plagioclase + pyroxene + amphibole ±K-feldspar, with the equilibrium temperature and pressure conditions of 744—821℃ and 0.76—0.88 GPa. The granulites are regarded as derivation from the lower crust depth (more than 29 km), below the amphibolites. Garnet granulites compositionally correspond to sub-alkalic basalt, and have wide ranges of Ni abundance (133—840 ppm), and Nb/Y (0.12—1.85), Nb/U (3.51—53.86) and Ta/U (0.38—2.48). The amphibolite and the syenite correspond to alkalic basalt. The Fuxian ma- fic xenoliths are regarded as the metamorphic product of the underplated magmas (including fractional crystallization or not) experienced the contamination with the pre-existed crustal com- ponents, and partly effected by kimberlitic magmas. The concordant ages of zircons for the gab- bro (2610—2580 Ma) and the near-concordant upper intercept ages of zircons for the garnet granulite and pyroxene amphibolite (2578—2538 Ma) indicate that they are currently known as the oldest deep-seated xenoliths from the lower crust of the North China Craton. These ages recorded the formation of the united Eastern Block of the North China Craton, That is, Neoar- chean (2.6—2.5 Ga) is an important continental crustal growth period of the North China Craton. The lower intercept age of the garnet granulite (1853 Ma) recorded an important tectonic thermal event in Paleoproterozoic. This event was probably related to collision of the East and West block, and resulted in the final assembly of the North China Craton around at 1.8 Ga.展开更多
Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma±30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope geochemistry studies indicate that the dike swarm was products of back-...Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma±30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope geochemistry studies indicate that the dike swarm was products of back-arc basin spreading ridge and the magma originated from the depleted mantle region which was metasomatized by LTLE-rich liquids/melts derived from subduction slab.展开更多
I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the ...I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the unconformable contact zone between the Archeozoic Kangding complex and the Presinian Yanbian group. The country rocks of the complex are magmatic and regional metamorphic rocks. The complex is stretched NW, irregularly ellipsoidal in shape, 9 km in length (SN)展开更多
It is considered that the early Jinning period granitoids from southern Anhui Province belong to the continental crust transformation (S) type and have their own characteristics which are different from those for gene...It is considered that the early Jinning period granitoids from southern Anhui Province belong to the continental crust transformation (S) type and have their own characteristics which are different from those for general continental crust transformation type granitoids. They were formed at the early stage of the late Proterozoic era when that region was at an island-arc stage of the continental margin environment. By that time the continental crust was just formed and had a nature of juvenile crust. It is this juvenile crust that determined a series of characteristics of that type granitoids and made them a relatively independent rock type. They are the products formed by the continental crust in a certain stage of development.展开更多
文摘Even though the ophiolite sequence has been disturbed by tectonism and metamorphism, the ultramafic rocks, the gabbro, the diabase and the basalt of the Animaqen ophiolite have been proved to be respectively the metamorphic peridotite and the ultramafic cumulate, the mafic cumulate, the sheeted dike and the mafic extrusive rocks of the ophiolite suite based on the petrochemistry. The Animaqen ophiolite zone represents the location of the ancient plate suture line.
基金Project supported by the Foundation of the Director of Chinese Academy of Sciences.
文摘Based on studies on more than 40 alkali-rich intrusions in China, rocks of this family are divided into three groups (alkali granite, syenite and nepheline syenite) and their petrological and petrochemical characters are discussed. These alkali-rich rocks can be assigned to 6 rock assemblages characterized by different petrogenesis. Alkali-rich rocks are distributed in linear pattern controlled by deep fault. Genetically, they are characterized by a deep source and emplacement at small depth. Their petrochemistry depends to a great extent on the degree of contamination by the lower crust. The alkali granite is the most, and the miaskite nepheline syenite the least, contaminated.
基金provided by the National Scientific and Tecnological Support Program of China(Grant No:2006BAB01A11)
文摘South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.
文摘The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks.
基金financially supported by the National Geological Survey Project and National Scientific and Technological Support Project (Grant Nos. 1212011085534 and 2011BAB04B05)
文摘The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
基金The National Natural Science Foundation of China !(No .492 5 2 0 0 1)
文摘Based on the data from typical core sampling, combined with K Ar dating, petrochemistry ,trace elemental geochemistry and isotopic compositions of the Mesozoic Cenozoic volcanic rock in the Huanghua basin, Bohai region, the geochemical features of the volcanic rock were studied. The rocks fall into four groups: Cenozoic basalt,Mesozoic late Cretaceous basaltic trachy andesite, Mesozoic late Cretaceous trachy dacite and liparite,and Mesozoic early Triassic dacite. The distribution pattern of the main elemental abundance of late Mesozoic shows a typical bimodal.Chronologically,for the volcanic rock,the amount of SiO 2 decreases gradually,the contents of Fe 2O 3,FeO,CaO,MgO,TiO 2,P 2O 5 and MnO increase little by little.The Cenozoic basalt is derived from the asthenospheric mantle.The late Cretaceous basaltic trachy andesite is derived from the enriched lithospheric mantle.In late Cretaceous and early Palaeogene,the felsic volcanic rock may be derived from fractional melting of the crust.
文摘Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry of magmatic rocks further indicate that there were really a Late Paleozoic rift valley in Chabu\|Chasang area, and no so\|called Paleo\|Tethys suture zone existed there. The rift initially split in early Carboniferous, access the peak in Lower Permian, is closed and folded during Late Permian. The volcanic rocks composed of mainly basalts, a small amount of basaltic andesites and andesites, are zonally distributed, and occur alternately with flysch or flyschoid sandstones, slates, pebbled slates, radiolarian cherts and carbonate rocks. The sedimentary facies change rapidly toward both sides and show rapid deposits of proximal gravity flow.
文摘The Precambrian greywacke of Ribandar-Chimbel belonging to the Sanvordem Formation of the Goa Group, India, has been studied for petrography and analyzed for major trace elements. The greywacke is characterized by angular to sub-round grains of quartz, feldspar, biotite, chlorite and clay minerals. The abundance of clay in the matrix seems to have influenced the Al2O3 content and the K20/Al2O3 ratio. The variation diagrams indicate a decreasing trend of TiO2, Al2O3, Fe2O3 and MgO; whereas Na2O and CaO exhibit a scatter which could be a result of the variable presence of feldspar within the sediments. The immobile elements, vanadium (25 to 144 ppm), nickel (up to 107 ppm) and chromium (up to 184 ppm), reflect abundance of clay minerals. The greywacke shows strongly fractionated REE patterns with LaN/YbN = 8 to 26 and with higher total REE abundances (up to 245 ppm). The low REE enrichment and depletion in heavier REE with prominent negative Eu anomaly (Eu/Eu^*= 0.54 to 0.79) suggest a derivation of the greywacke from an old upper continental crust composed chiefly of felsic components. Petrological evidence and geochemical data suggest that the deposition of the greywacke largely took place in a deep to shallow basin that progressively chang- ed from that of a continental island arc to an active continental setting.
基金Selcuk University's(Konya,Turkey)Scientific Research Fund for its support,and to Professor Mehmet Arslan(Karadeniz Technical University,Turkey)for improving the manuscript.
文摘The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.
文摘The geochemical and petrological features show that the Upper Ordovician marine volcanic rocks on north margin of Qaidam can be classified into three main kinds of petrotectonic assemblages. The three assemblages exhibit features of tectonic melange. And they indicate that there exists an ancient ocean basin on north margin of Qaidam during Late Ordovician period. At the last stage of Ordovician period, the ocean basin on north margin of Qaidam closed gradually, then Qaidam continental block subducted continually and Qilian continental block thrusted onto Qaidam continental block in the direction from north to south, formed the orogenic belt of continent to continent collision type. As a result, a three unit tectonic model is proposed. The three units are: the overlying Qilian crustal wedge, the collision tectonic melange belt on the north margin of Qaidam and the Qaidam underthrusted wedge.
基金supported by the National Natural Science Foundation of China (Nos. 41872070, 41802071, 41773026 and 41303028)the China Geological Survey (No. DD20190053)
文摘The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can be subdivided into two-mica leucogranite(TML), garnet-bearing leucogranite(GL), cordierite-bearing leucogranite(CL), and tourmaline-bearing leucogranite(TL). All of them are high-K, peraluminous, calc-alkalic to alkali-calcic rocks. They are enriched in light rare earth elements(LREE) and large ion lithophile elements(LILE), and show pronounced negative anomalies of Sr, Ba, K and Ti, but positive anomalies of Nb and Rb. LA-ICP-MS U-Pb zircon dating of one TML, one GL, and two CL samples yielded variable 206Pb/238U ages ranging from 23.6 to 16.1 Ma, indicating the Paiku leucogranites underwent a low degree of partial melting process. Combining with previous studies, we suggest the Paiku leucogranites were derived from partial melting of metasedimentary rocks of the Higher Himalayan Sequence(HHS). The GL and TL mainly resulted from the muscovite-dehydration melting, whereas the TML and CL were mainly derived from the biotite-dehydration melting. Finally, it is concluded that the Paiku leucogranites were probably formed during the subduction of the Indian crust.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40072021, 40133020 and 0273001)
文摘Mafic xenoliths from Paleozoic Fuxian kimberlites (Liaoning Province) mainly in- clude garnet granulite, with minor pyroxene amphibolite, meta-gabbro and pyroxene syenite. The SiO2 contents of the xenoliths are from 47.3 wt% to 49.9 wt%. The granulites are mainly coarse-medium grained and reasonably with well-developed granoblastic (mostly polygonal) texture, contain the assemblage of garnet + plagioclase + pyroxene + K-feldspar ±phlogopite. The mineral assemblage of the amphibolites is plagioclase + pyroxene + amphibole ±K-feldspar, with the equilibrium temperature and pressure conditions of 744—821℃ and 0.76—0.88 GPa. The granulites are regarded as derivation from the lower crust depth (more than 29 km), below the amphibolites. Garnet granulites compositionally correspond to sub-alkalic basalt, and have wide ranges of Ni abundance (133—840 ppm), and Nb/Y (0.12—1.85), Nb/U (3.51—53.86) and Ta/U (0.38—2.48). The amphibolite and the syenite correspond to alkalic basalt. The Fuxian ma- fic xenoliths are regarded as the metamorphic product of the underplated magmas (including fractional crystallization or not) experienced the contamination with the pre-existed crustal com- ponents, and partly effected by kimberlitic magmas. The concordant ages of zircons for the gab- bro (2610—2580 Ma) and the near-concordant upper intercept ages of zircons for the garnet granulite and pyroxene amphibolite (2578—2538 Ma) indicate that they are currently known as the oldest deep-seated xenoliths from the lower crust of the North China Craton. These ages recorded the formation of the united Eastern Block of the North China Craton, That is, Neoar- chean (2.6—2.5 Ga) is an important continental crustal growth period of the North China Craton. The lower intercept age of the garnet granulite (1853 Ma) recorded an important tectonic thermal event in Paleoproterozoic. This event was probably related to collision of the East and West block, and resulted in the final assembly of the North China Craton around at 1.8 Ga.
基金Project supported by the National Natural Science Foundation of China
文摘Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma±30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope geochemistry studies indicate that the dike swarm was products of back-arc basin spreading ridge and the magma originated from the depleted mantle region which was metasomatized by LTLE-rich liquids/melts derived from subduction slab.
文摘I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the unconformable contact zone between the Archeozoic Kangding complex and the Presinian Yanbian group. The country rocks of the complex are magmatic and regional metamorphic rocks. The complex is stretched NW, irregularly ellipsoidal in shape, 9 km in length (SN)
文摘It is considered that the early Jinning period granitoids from southern Anhui Province belong to the continental crust transformation (S) type and have their own characteristics which are different from those for general continental crust transformation type granitoids. They were formed at the early stage of the late Proterozoic era when that region was at an island-arc stage of the continental margin environment. By that time the continental crust was just formed and had a nature of juvenile crust. It is this juvenile crust that determined a series of characteristics of that type granitoids and made them a relatively independent rock type. They are the products formed by the continental crust in a certain stage of development.