The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ...The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a miner...Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.展开更多
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed ...The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.展开更多
北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应...北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应关系。富碱斑岩具有埃达克岩的地球化学亲合性,其源区是喜马拉雅期印-亚碰撞造山造成的软流圈向东挤出汇聚使大规模走滑断裂活化,诱发玄武质下地壳部分熔融的壳幔过渡层,成岩年龄可分为第一期(65~59Ma)、第二期(36~32Ma)、第三期(26~24Ma)和最晚期(3.8~3.6Ma)等4期,其中第二、三期与富碱岩带北段的两期岩浆集中活动时期基本吻合,形成的斑岩对金多金属成矿较为有利。区内金多金属矿床可划分为三个矿床类型和七个矿床亚类,即与喜马拉雅早—中期斑岩有关的金多金属矿床(Ⅰ),包括接触带夕卡岩型、斑岩型和热液充填型(及熔浆型)金多金属矿床;与喜马拉雅第三期斑岩有关的金多金属矿床(Ⅱ),包括爆破角砾岩型和叠加热液改造型金多金属矿床;以及与喜马拉雅期表生作用有关的风化堆积型金矿床(Ⅲ),包括古砂矿型和红色粘土型金矿床。Ⅰ、Ⅱ类型矿床受富碱斑岩及伴生的 NE 到 NNE 向断裂控制,赋存于富碱斑岩体内、内外接触带及其附近围岩的层间破碎带或构造裂隙带中,在成因和空间上与斑岩及隐爆角砾岩等密切有关。成矿物质和成矿流体主要来源于地幔,围岩地层只是提供了成矿的空间,不同类型的矿体之间呈"贯通式"的时间和空间关系,构成了一个统一的喜马拉雅期富碱斑岩-热液型金多金属成矿系统。先期形成矿床明显受后期岩浆热液的叠加改造,但矿化分布和成矿元素组合仍表现为以斑岩为中心,存在 CuAu(Mo)多金属→FeCuAuPbZn 多金属→AuPhZnAg 多金属的分带特征。从最早期含金铁矿床形成之后,原生金矿的次生富集和表生成矿作用就已开始,并形成不同成因类型的风化-堆积型金矿床。其中,古红色粘土型金矿床的成矿主要发生在始新世到渐新世,河-湖相古砂金矿床形成于23~5Ma 期间,红色粘土型(残坡积型)金矿床可从始新世一直延续至今。通过与区域斑岩成岩成矿演化时序的对比,提出与藏东-金沙江-哀牢山斑岩成矿带上的众多矿床一样,北衙矿田内的成岩成矿作也是喜马拉雅期印-亚陆陆碰撞造山带成岩成矿作用在东南缘构造转换带的远程效应,记录了印-亚大陆碰撞造山的详细过程。因而,该矿田深部及外围地区,仍存在巨大的找矿潜力。盐源-丽江断裂带可能也是一务与藏东-金沙江.哀牢山斑岩成矿带联系密切而又相对独立的富碱斑岩成矿带。展开更多
Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements,depletion in heavy rare-earth elements,positive to negligible Eu and Sr anomalies,and high La/Yb and Sr/Y ra...Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements,depletion in heavy rare-earth elements,positive to negligible Eu and Sr anomalies,and high La/Yb and Sr/Y ratios.Cenozoic adakitic rocks generated by partial melting of subducted oceanic crust(slab)under eclogite-facies conditions(i.e.,the original definition of“adakite”)occur mainly in Pacific Rim volcanic arcs(intra-oceanic,continental,and continental-margin island arcs),whereas those generated by partial melting of thickened lower crust occur mainly in Tethyan Tibetan collisional orogens.In volcanic arcs,adakitic melts derived from the melting of subducted oceanic crust metasomatize the mantle wedge to form a unique rock suite comprising adakite-adakite-type high-Mg andesite-Piip-type high-Mg andesite-Nb-rich basalt-boninite.This suite differs from the basalt-andesite-dacite-rhyolite suite formed from mantle wedge metasomatized by fluids derived from subducted oceanic crust.Previously published data indicate that partial melting of mafic rocks can generate adakitic magmas under pressure,temperature,and hydrous conditions of 1.2-3.0 GPa,800-1000℃,and 1.5-6.0 wt.%H_(2)O,respectively,leaving residual minerals of garnet and rutile with little or no plagioclase.Cenozoic Au and Cu deposits occur proximally to adakitic rocks,with host rocks of some deposits actually being adakitic rocks.Adakitic rocks thus have important implications for both deep-Earth dynamics and Cu-Au mineralization/exploration.Although studies of Cenozoic adakitic rocks have made many important advances,there remain weaknesses in some important areas such as their tectonic settings,petrogenesis,magma sources,melt-mantle interactions of pre-Cenozoic adakitic rocks,and their relationship with the onset of plate tectonics and crustal growth.Future research directions are likely to involve(1)the generation of adakitic magmas by experimental simulations of partial melting of different types of rock(including intermediate-acid rocks)and magma fractional crystallization at different temperatures and pressures,(2)the relationship between magma reservoir evolution and the formation of adakitic rocks,(3)the tectonic setting and petrogenesis of pre-Cenozoic adakitic rocks and related geodynamic processes,(4)interactions between slab melts and the mantle wedge,(5)the formation of Archean adakitic tonalite-trondhjemite-granodiorite and its link to the onset of plate tectonics and crustal growth,and(6)the relationship between the formation of adakitic rocks and metal mineralization in different tectonic settings.展开更多
Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢),...Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢), and Shangfang (上房) deposits, represents a superlarge skarn-porphyry molybdenum (-tungsten) accumulation. Outside the ore field, there are some hydrothermal lead-zinc-silver deposits found in recent years, for example, the Lengshuibeigou (冷水北沟), Yindonggou (银涧沟), Yangshuwa (杨树凹), and Yinhegou (银河沟) deposits. Ore-forming fluid geochemistry indicates that these deposits belong to the same metallogenic system. The hydrothermal solutions were mainly derived from primary magmatic water in the early stage and from the mixture of the primary magmatic water and meteoric water in the later stage, with an obvious decreasing tendency in temperature, salinity and gas-liquid ratio of fluid inclusions. Sulfur and lead isotope data show that the ore-forming substances and related porphyries were mainly derived from the lower crust, and a hidden magmatic chamber is indicated by aeromagnetic anomaly and drill hole data indicate that the Nannihu granite body extends to being larger and larger with depth increasing. The large-scale mineralization was the consequence of lithospheric extension during the late stage of the tectonic regime when the main compressional stress changed from NS-trending to EW-trending.展开更多
The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield ...The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.展开更多
Iron oxide copper-gold (IOCG) deposits are a research focus of the current ore deposit geology, and have attracted much attention among the worldwide geologists and exploration experts due to their shallow depth, a ...Iron oxide copper-gold (IOCG) deposits are a research focus of the current ore deposit geology, and have attracted much attention among the worldwide geologists and exploration experts due to their shallow depth, a wide variety of mineral species and large scale. This paper presents a review of the present IOCG deposits research, which includes the definition of IOCG deposits, temporal and spatial distribution, ore-forming environments, ore-forming magmatic rocks, their geological features, ore-controlling structures and ore-bearing rocks, mineralized alteration zoning, and their genesis and ore-forming process. This work also proposed the ore prospecting direction of IOCG deposits from a trinity model of metaUogenic geological bodies, metallogenic structure surface and metailogenic information signs, and discussed the existing problems of the IOCG deposits research.展开更多
A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongli...A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion展开更多
Mafic-uitramafic complexes are widespread in Hongqiling in central Jiulin Province, NE China. The Hongqiling complex comprises pyroxenite, olivine websterite, lberzolite, gabbro and leucogabbro. Based on the latest ge...Mafic-uitramafic complexes are widespread in Hongqiling in central Jiulin Province, NE China. The Hongqiling complex comprises pyroxenite, olivine websterite, lberzolite, gabbro and leucogabbro. Based on the latest geochronological results, these intrusions yield a zircon U-Pb age of about 216 Ma, implying that they emplaced in the late Triassic period and that the mafic-uitramafic complexes are post-orogenic in origin. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than syn-orogenic granitic magmatism. The composition of the parent magma during the equilibration of the accumulated olivine crystallizing is basaltic with high MgO, and it comes from depleted or juvenile lithospheric mantle, according to the results of trace elements and Sr-Nd isotopes. Amount of crustal material contaminated the magmatic source, implying that the mafic-uitramafic rocks originate from the mixing product of crust- and mantle-derived magma. Therefore, the magmatic source was contaminated by an amount of crustal material, and the subsequent crystal fractionation resulted in the Cu-Ni mineralization. Dynamic analyses indicate that, after the collision of the North China Craton and Jiamusi Massif, the lithospheric delamination during post-orogeny resulted in the upwelling of asthenosphere and the intruding of the mass and underplating of the mantle-derived magma, which led to the formation of the primary mafic-uitramafic magma due to the mantle-derived magma and partial melting of the lower crust. This result suggests that the mafic-uitramafic complexes belong to a typically important magmatic suite that evolved during post-orogenic processes, and they were exposed as maficultramafic dyke swarms that existed in the post-orogenic extension environment. It also implies that the orogenic process finished ultimately in this regional geological setting. The widespread occurrence of mafic-uitramafic complexes in the Xing'an-Mongolia Orogenic Belt in NE China and in the Altay-Tianshan-Junggar Orogenic Belt in Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as a heat source for associated late-stage granitic magmas.展开更多
It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metal...It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism).展开更多
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金funded by the third subject of National Natural Science Foundation of China(41302060)Geological Survey Project(12120114001304,121201004000150012)
文摘The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金NFSC (Grant No. 4933120) and State Key Project (Grant No. 95-Y-39).
文摘Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41172085 & 41472066)the Scientific Project of China Geological Survey (Grant No. 12120114028401)
文摘The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.
文摘北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应关系。富碱斑岩具有埃达克岩的地球化学亲合性,其源区是喜马拉雅期印-亚碰撞造山造成的软流圈向东挤出汇聚使大规模走滑断裂活化,诱发玄武质下地壳部分熔融的壳幔过渡层,成岩年龄可分为第一期(65~59Ma)、第二期(36~32Ma)、第三期(26~24Ma)和最晚期(3.8~3.6Ma)等4期,其中第二、三期与富碱岩带北段的两期岩浆集中活动时期基本吻合,形成的斑岩对金多金属成矿较为有利。区内金多金属矿床可划分为三个矿床类型和七个矿床亚类,即与喜马拉雅早—中期斑岩有关的金多金属矿床(Ⅰ),包括接触带夕卡岩型、斑岩型和热液充填型(及熔浆型)金多金属矿床;与喜马拉雅第三期斑岩有关的金多金属矿床(Ⅱ),包括爆破角砾岩型和叠加热液改造型金多金属矿床;以及与喜马拉雅期表生作用有关的风化堆积型金矿床(Ⅲ),包括古砂矿型和红色粘土型金矿床。Ⅰ、Ⅱ类型矿床受富碱斑岩及伴生的 NE 到 NNE 向断裂控制,赋存于富碱斑岩体内、内外接触带及其附近围岩的层间破碎带或构造裂隙带中,在成因和空间上与斑岩及隐爆角砾岩等密切有关。成矿物质和成矿流体主要来源于地幔,围岩地层只是提供了成矿的空间,不同类型的矿体之间呈"贯通式"的时间和空间关系,构成了一个统一的喜马拉雅期富碱斑岩-热液型金多金属成矿系统。先期形成矿床明显受后期岩浆热液的叠加改造,但矿化分布和成矿元素组合仍表现为以斑岩为中心,存在 CuAu(Mo)多金属→FeCuAuPbZn 多金属→AuPhZnAg 多金属的分带特征。从最早期含金铁矿床形成之后,原生金矿的次生富集和表生成矿作用就已开始,并形成不同成因类型的风化-堆积型金矿床。其中,古红色粘土型金矿床的成矿主要发生在始新世到渐新世,河-湖相古砂金矿床形成于23~5Ma 期间,红色粘土型(残坡积型)金矿床可从始新世一直延续至今。通过与区域斑岩成岩成矿演化时序的对比,提出与藏东-金沙江-哀牢山斑岩成矿带上的众多矿床一样,北衙矿田内的成岩成矿作也是喜马拉雅期印-亚陆陆碰撞造山带成岩成矿作用在东南缘构造转换带的远程效应,记录了印-亚大陆碰撞造山的详细过程。因而,该矿田深部及外围地区,仍存在巨大的找矿潜力。盐源-丽江断裂带可能也是一务与藏东-金沙江.哀牢山斑岩成矿带联系密切而又相对独立的富碱斑岩成矿带。
基金the National Natural Science Foundation of China(Grant Nos.41630208 and 91855215)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0702)+2 种基金the National Key R&D Program of China(Grant No.2016YFC0600407)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(Grant No.XDA2007030402),the Key Program of the Chinese Academy of Sciences(Grant No.QYZDJ-SSWDQC026)the Key Program of Guangzhou City(Grant No.201707020032).
文摘Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements,depletion in heavy rare-earth elements,positive to negligible Eu and Sr anomalies,and high La/Yb and Sr/Y ratios.Cenozoic adakitic rocks generated by partial melting of subducted oceanic crust(slab)under eclogite-facies conditions(i.e.,the original definition of“adakite”)occur mainly in Pacific Rim volcanic arcs(intra-oceanic,continental,and continental-margin island arcs),whereas those generated by partial melting of thickened lower crust occur mainly in Tethyan Tibetan collisional orogens.In volcanic arcs,adakitic melts derived from the melting of subducted oceanic crust metasomatize the mantle wedge to form a unique rock suite comprising adakite-adakite-type high-Mg andesite-Piip-type high-Mg andesite-Nb-rich basalt-boninite.This suite differs from the basalt-andesite-dacite-rhyolite suite formed from mantle wedge metasomatized by fluids derived from subducted oceanic crust.Previously published data indicate that partial melting of mafic rocks can generate adakitic magmas under pressure,temperature,and hydrous conditions of 1.2-3.0 GPa,800-1000℃,and 1.5-6.0 wt.%H_(2)O,respectively,leaving residual minerals of garnet and rutile with little or no plagioclase.Cenozoic Au and Cu deposits occur proximally to adakitic rocks,with host rocks of some deposits actually being adakitic rocks.Adakitic rocks thus have important implications for both deep-Earth dynamics and Cu-Au mineralization/exploration.Although studies of Cenozoic adakitic rocks have made many important advances,there remain weaknesses in some important areas such as their tectonic settings,petrogenesis,magma sources,melt-mantle interactions of pre-Cenozoic adakitic rocks,and their relationship with the onset of plate tectonics and crustal growth.Future research directions are likely to involve(1)the generation of adakitic magmas by experimental simulations of partial melting of different types of rock(including intermediate-acid rocks)and magma fractional crystallization at different temperatures and pressures,(2)the relationship between magma reservoir evolution and the formation of adakitic rocks,(3)the tectonic setting and petrogenesis of pre-Cenozoic adakitic rocks and related geodynamic processes,(4)interactions between slab melts and the mantle wedge,(5)the formation of Archean adakitic tonalite-trondhjemite-granodiorite and its link to the onset of plate tectonics and crustal growth,and(6)the relationship between the formation of adakitic rocks and metal mineralization in different tectonic settings.
基金supported by the National Graduate Student Program of Building World-Class Universities (No. [2007]3020),China Scholarship CouncilState Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200644), China University of Geosciences (Beijing)the National Natural Science Foundation of China (No. 40172036)
文摘Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢), and Shangfang (上房) deposits, represents a superlarge skarn-porphyry molybdenum (-tungsten) accumulation. Outside the ore field, there are some hydrothermal lead-zinc-silver deposits found in recent years, for example, the Lengshuibeigou (冷水北沟), Yindonggou (银涧沟), Yangshuwa (杨树凹), and Yinhegou (银河沟) deposits. Ore-forming fluid geochemistry indicates that these deposits belong to the same metallogenic system. The hydrothermal solutions were mainly derived from primary magmatic water in the early stage and from the mixture of the primary magmatic water and meteoric water in the later stage, with an obvious decreasing tendency in temperature, salinity and gas-liquid ratio of fluid inclusions. Sulfur and lead isotope data show that the ore-forming substances and related porphyries were mainly derived from the lower crust, and a hidden magmatic chamber is indicated by aeromagnetic anomaly and drill hole data indicate that the Nannihu granite body extends to being larger and larger with depth increasing. The large-scale mineralization was the consequence of lithospheric extension during the late stage of the tectonic regime when the main compressional stress changed from NS-trending to EW-trending.
基金the State Key Basic Research Program of China(No.G1999043206)the National Natural Science Foundation of China(No.40372050)+1 种基金the Project of Resources Assessment of the Geological Surveyof China(No.200310200064) the Key Laboratory of Lithospheric Tectonics and Lithoprobing Technology.
文摘The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.
基金financially supported by the investment and financing strategy research of the international mining capital market
文摘Iron oxide copper-gold (IOCG) deposits are a research focus of the current ore deposit geology, and have attracted much attention among the worldwide geologists and exploration experts due to their shallow depth, a wide variety of mineral species and large scale. This paper presents a review of the present IOCG deposits research, which includes the definition of IOCG deposits, temporal and spatial distribution, ore-forming environments, ore-forming magmatic rocks, their geological features, ore-controlling structures and ore-bearing rocks, mineralized alteration zoning, and their genesis and ore-forming process. This work also proposed the ore prospecting direction of IOCG deposits from a trinity model of metaUogenic geological bodies, metallogenic structure surface and metailogenic information signs, and discussed the existing problems of the IOCG deposits research.
基金financially supported by the Ministry of Science and Technology of China(Grant No.1999043206)the National Natural Science Foundation of China(Grant Nos.40272034 and 40133020).
文摘A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion
基金The research was sponsored by the China NaturalScience Foundation under the project numbers of 40234040 and 40133020) .
文摘Mafic-uitramafic complexes are widespread in Hongqiling in central Jiulin Province, NE China. The Hongqiling complex comprises pyroxenite, olivine websterite, lberzolite, gabbro and leucogabbro. Based on the latest geochronological results, these intrusions yield a zircon U-Pb age of about 216 Ma, implying that they emplaced in the late Triassic period and that the mafic-uitramafic complexes are post-orogenic in origin. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than syn-orogenic granitic magmatism. The composition of the parent magma during the equilibration of the accumulated olivine crystallizing is basaltic with high MgO, and it comes from depleted or juvenile lithospheric mantle, according to the results of trace elements and Sr-Nd isotopes. Amount of crustal material contaminated the magmatic source, implying that the mafic-uitramafic rocks originate from the mixing product of crust- and mantle-derived magma. Therefore, the magmatic source was contaminated by an amount of crustal material, and the subsequent crystal fractionation resulted in the Cu-Ni mineralization. Dynamic analyses indicate that, after the collision of the North China Craton and Jiamusi Massif, the lithospheric delamination during post-orogeny resulted in the upwelling of asthenosphere and the intruding of the mass and underplating of the mantle-derived magma, which led to the formation of the primary mafic-uitramafic magma due to the mantle-derived magma and partial melting of the lower crust. This result suggests that the mafic-uitramafic complexes belong to a typically important magmatic suite that evolved during post-orogenic processes, and they were exposed as maficultramafic dyke swarms that existed in the post-orogenic extension environment. It also implies that the orogenic process finished ultimately in this regional geological setting. The widespread occurrence of mafic-uitramafic complexes in the Xing'an-Mongolia Orogenic Belt in NE China and in the Altay-Tianshan-Junggar Orogenic Belt in Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as a heat source for associated late-stage granitic magmas.
文摘It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism).