期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Characteristics of Pegmatite-Related Fluids and Significance to Ore-Forming Processes in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit,Tibet,China 被引量:6
1
作者 XIE Yuling WANG Bogong +4 位作者 LI Yingxu LI Guangming DONG Suiliang GUO Xiang WANG Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期811-821,共11页
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less... The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion. 展开更多
关键词 Zhaxikang Pb-Zn-Sb deposit South Tibte Sb-Au metallogenic belt fluid inclusion pegmatite ore-forming process
下载PDF
Fluid Evolution and Ore-forming Processes of the Jiama Cu Deposit, Tibet: Evidence from Fluid Inclusions 被引量:2
2
作者 YAO Xiaofeng LIU Jiajun +2 位作者 TANG Juxing ZHENG Wenbao ZHANG Zhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期127-143,共17页
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ... The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag. 展开更多
关键词 fluid inclusion fluid evolution ore-forming processes Jiama deposit TIBET
下载PDF
Dynamics of Ore-Forming Processesof the Stratabound Skarn Copper Depositsof Tongling, Anhui Province 被引量:2
3
作者 Yu Chongwen, Jiang Yaosong and Xiao Zhengyu China University of Geosciences, Beijing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1996年第1期59-73,共15页
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ... The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies. 展开更多
关键词 stratabound skarn ore deposit dynamics of ore-forming processes dynamics of coupled transport and reaction transport-reaction of mixing isothermal transport-reaction gradient transport-reaction
下载PDF
The solubility of a metallic mineral with other coexisting minerals and the ore-forming processes of metallic sulfides 被引量:2
4
作者 岑况 於崇文 《Science China Earth Sciences》 SCIE EI CAS 2001年第4期289-297,共9页
Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a miner... Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface. 展开更多
关键词 METALLIC mineral coexisting MINERAL solubility ore-forming process.
原文传递
Evidence from pseudomorphous β-quartz phenocryst for decompression of rock-forming and ore-forming processes in Shapinggou porphyry Mo deposit 被引量:2
5
作者 HE Jun XU XiaoChun +2 位作者 XIE QiaoQin FAN ZiLiang CHEN TianHu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期1014-1024,共11页
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed ... The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting. 展开更多
关键词 Porphyry Mo deposit Pseudomorphous β-quartz Decompression mechanism Rock-forming and ore-forming processes Shapinggou Mo deposit
原文传递
云南峨眉山高钛和低钛玄武岩的岩石成因 被引量:31
6
作者 姜寒冰 姜常义 +3 位作者 钱壮志 朱士飞 张蓬勃 唐冬梅 《岩石学报》 SCIE EI CAS CSCD 北大核心 2009年第5期1117-1134,共18页
峨眉山玄武岩主要的岩石类型是低钛玄武岩和高钛玄武岩,并有少量的苦橄岩。它们不同程度地富集大离子亲石元素和轻稀土元素,相对亏损重稀土元素,稀土元素分馏明显或比较明显,相容元素(Co、V、Cr、Ni)显著亏损。低钛玄武岩浆受到陆壳物... 峨眉山玄武岩主要的岩石类型是低钛玄武岩和高钛玄武岩,并有少量的苦橄岩。它们不同程度地富集大离子亲石元素和轻稀土元素,相对亏损重稀土元素,稀土元素分馏明显或比较明显,相容元素(Co、V、Cr、Ni)显著亏损。低钛玄武岩浆受到陆壳物质的明显混染,高钛玄武岩浆也受到混染,但混染程度弱于低钛玄武岩浆。同化混染对Sr同位素和大离子亲石元素的影响程度大于对稀土元素和Nd同位素的影响程度。混染物是下地壳变质岩,也有少量上地壳物质。未受混染的样品具有适度亏损的Nd、Sr同位素。高钛玄武岩在岩浆演化过程中主要分离结晶相/堆晶相是单斜辉石,并有少量的斜长石。低钛玄武岩中,单斜辉石和斜长石的分离结晶作用是最主要的因素。低钛玄武岩的主体部分是在尖晶石稳定域与石榴石稳定域之间的过渡带熔融的;高钛玄武岩的主体部分是在石榴石稳定域内熔融的,极少部分是在尖晶石稳定域内熔融的。 展开更多
关键词 峨眉山玄武岩 岩石学 岩石地球化学 岩浆过程 岩石成因
下载PDF
安徽月山岩体地球化学特征及成因机理分析 被引量:21
7
作者 周涛发 岳书仓 +2 位作者 袁峰 刘晓东 赵勇 《高校地质学报》 CAS CSCD 2001年第1期70-80,共11页
通过对长江中下游地区具代表性的大型矽卡岩 热液脉型铜 (铁 )、金、多金属矿田中成矿岩体—月山岩体的地质地球化学特征及其成因制约与反演讨论 ,认为该岩体为深源的碱性玄武质岩浆经过结晶分异和同化混染联合作用 (AFC过程 )形成的 ,... 通过对长江中下游地区具代表性的大型矽卡岩 热液脉型铜 (铁 )、金、多金属矿田中成矿岩体—月山岩体的地质地球化学特征及其成因制约与反演讨论 ,认为该岩体为深源的碱性玄武质岩浆经过结晶分异和同化混染联合作用 (AFC过程 )形成的 ,其中 ,幔源物质约占 70 % ,同化的壳源物质占 30 %。这种开放岩浆系统的形成与演化对于该区金属矿床成矿流体系统的形成与演化具有极其重要的意义。 展开更多
关键词 岩石地球化学 闪长岩类 岩石成因 AFC过程 月山岩体 多金属矿床 成矿岩体 成因 成岩机制
下载PDF
闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义 被引量:58
8
作者 赵希林 毛建仁 +1 位作者 陈荣 许乃政 《中国地质》 CAS CSCD 2008年第4期590-597,共8页
笔者通过锆石SHRIMP定年,精确厘定了紫金山岩体的成岩成矿时代。紫金山黑云母花岗岩中锆石CL图像显示锆石分为3种形态,定年结果显示这3种锆石有不同的年龄,具有不同的地质意义。第一种锆石晶形发育、具有核-边双层结构,核部的锆石呈磨圆... 笔者通过锆石SHRIMP定年,精确厘定了紫金山岩体的成岩成矿时代。紫金山黑云母花岗岩中锆石CL图像显示锆石分为3种形态,定年结果显示这3种锆石有不同的年龄,具有不同的地质意义。第一种锆石晶形发育、具有核-边双层结构,核部的锆石呈磨圆状,这类锆石为继承性锆石,年龄为1000Ma左右;第二种锆石晶形发育良好,但是呈不完整形态,有不清晰的生长环带或者无生长环带,呈现岩浆锆石的特征,年龄为168±4Ma(n=13,MSWD=0.97),这一年龄应代表了岩石的结晶年龄,属于中侏罗世;第三种锆石晶形发育良好,有清晰的生长环带,这种锆石受后期改造作用,年龄为(119±15)Ma,属于早白垩世。(168±4)Ma时本区并未发生大规模的成矿事件,因此紫金山岩体主体并非含矿岩体,仅有轻微的锡矿化。紫金山花岗岩锆石SHRIMP定年的第三组年龄为(119±15)Ma是大规模成矿作用的记录,可能正是这一期的热液作用开始了本区大规模的长时期的多期次的岩浆热液作用的序幕,从而为本区铜金成矿作用奠定了基础。 展开更多
关键词 紫金山岩体 SHRIMP锆石定年 岩浆热液作用 成岩成矿
下载PDF
理解岩浆系统的物理过程 被引量:11
9
作者 罗照华 刘翠 苏尚国 《岩石学报》 SCIE EI CAS CSCD 北大核心 2014年第11期3113-3119,共7页
岩浆系统是一种复杂性动力系统,暗示岩浆系统的演化具有多重分支现象,即其演化路径包含一系列平衡过程与突变事件。因此,岩浆系统的物理过程是理解岩浆形成与演化及其相关地质过程的关键。邓晋福教授及其学术团队长期坚持岩浆系统物理... 岩浆系统是一种复杂性动力系统,暗示岩浆系统的演化具有多重分支现象,即其演化路径包含一系列平衡过程与突变事件。因此,岩浆系统的物理过程是理解岩浆形成与演化及其相关地质过程的关键。邓晋福教授及其学术团队长期坚持岩浆系统物理过程的研究,在火成岩成因、火成岩构造组合、岩浆活动与成矿作用的关系和相关的地球深部过程等研究领域都做出了杰出的贡献。本文集刊登了部分相关的研究成果,以强调岩浆系统物理过程的重要性。我们撰写此文,目的是简要介绍本文集的主要内容和强调岩浆系统物理过程的研究意义。 展开更多
关键词 岩浆系统 物理过程 火成岩成因 岩石构造组合 深部过程
下载PDF
新疆哈密黄山东铜镍硫化物矿床成岩成矿作用 被引量:20
10
作者 胡沛青 任立业 +3 位作者 傅飘儿 张铭杰 李晓亚 秦宏毅 《矿床地质》 CAS CSCD 北大核心 2010年第1期158-168,共11页
黄山东铜镍硫化物矿床赋存于橄榄岩、苏长岩、辉长岩和闪长岩组成的镁铁-超镁铁质杂岩体中,赋矿岩体包含至少4套岩石组合。不同类型岩石微量元素和稀土元素原始地幔标准化配分模式指示,该矿床明显亏损Nb、Ta、Zr、Hf等高场强元素和Cr元... 黄山东铜镍硫化物矿床赋存于橄榄岩、苏长岩、辉长岩和闪长岩组成的镁铁-超镁铁质杂岩体中,赋矿岩体包含至少4套岩石组合。不同类型岩石微量元素和稀土元素原始地幔标准化配分模式指示,该矿床明显亏损Nb、Ta、Zr、Hf等高场强元素和Cr元素,富集Sr及大离子亲石元素;(La/Yb)N=1.08~2.70,δEu=0.50~2.57;含矿岩石Cu/Pd比值和Ti/Pd比值大于原始地幔值,表明不同类型岩石是高镁玄武质岩浆在深部分异结晶演化的产物。根据橄榄石和全岩化学组成可估算出母岩浆MgO含量约为12%。成矿岩浆深部演化过程中,富硅的地壳混染组分和外来流体的加入可能促成了岩浆中的硫饱和;深部熔离的不混溶硫化物珠滴被上升岩浆携带,富集在橄榄岩和苏长岩的底部。 展开更多
关键词 地质学 成矿作用 成岩作用 镁铁-超镁铁质岩体 铜镍硫化物矿床 黄山东 新疆
下载PDF
滇西北北衙金多金属矿田的成岩成矿作用:对印-亚碰撞造山过程的响应 被引量:45
11
作者 薛传东 侯增谦 +3 位作者 刘星 杨志明 刘勇强 郝百武 《岩石学报》 SCIE EI CAS CSCD 北大核心 2008年第3期457-472,共16页
北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应... 北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应关系。富碱斑岩具有埃达克岩的地球化学亲合性,其源区是喜马拉雅期印-亚碰撞造山造成的软流圈向东挤出汇聚使大规模走滑断裂活化,诱发玄武质下地壳部分熔融的壳幔过渡层,成岩年龄可分为第一期(65~59Ma)、第二期(36~32Ma)、第三期(26~24Ma)和最晚期(3.8~3.6Ma)等4期,其中第二、三期与富碱岩带北段的两期岩浆集中活动时期基本吻合,形成的斑岩对金多金属成矿较为有利。区内金多金属矿床可划分为三个矿床类型和七个矿床亚类,即与喜马拉雅早—中期斑岩有关的金多金属矿床(Ⅰ),包括接触带夕卡岩型、斑岩型和热液充填型(及熔浆型)金多金属矿床;与喜马拉雅第三期斑岩有关的金多金属矿床(Ⅱ),包括爆破角砾岩型和叠加热液改造型金多金属矿床;以及与喜马拉雅期表生作用有关的风化堆积型金矿床(Ⅲ),包括古砂矿型和红色粘土型金矿床。Ⅰ、Ⅱ类型矿床受富碱斑岩及伴生的 NE 到 NNE 向断裂控制,赋存于富碱斑岩体内、内外接触带及其附近围岩的层间破碎带或构造裂隙带中,在成因和空间上与斑岩及隐爆角砾岩等密切有关。成矿物质和成矿流体主要来源于地幔,围岩地层只是提供了成矿的空间,不同类型的矿体之间呈"贯通式"的时间和空间关系,构成了一个统一的喜马拉雅期富碱斑岩-热液型金多金属成矿系统。先期形成矿床明显受后期岩浆热液的叠加改造,但矿化分布和成矿元素组合仍表现为以斑岩为中心,存在 CuAu(Mo)多金属→FeCuAuPbZn 多金属→AuPhZnAg 多金属的分带特征。从最早期含金铁矿床形成之后,原生金矿的次生富集和表生成矿作用就已开始,并形成不同成因类型的风化-堆积型金矿床。其中,古红色粘土型金矿床的成矿主要发生在始新世到渐新世,河-湖相古砂金矿床形成于23~5Ma 期间,红色粘土型(残坡积型)金矿床可从始新世一直延续至今。通过与区域斑岩成岩成矿演化时序的对比,提出与藏东-金沙江-哀牢山斑岩成矿带上的众多矿床一样,北衙矿田内的成岩成矿作也是喜马拉雅期印-亚陆陆碰撞造山带成岩成矿作用在东南缘构造转换带的远程效应,记录了印-亚大陆碰撞造山的详细过程。因而,该矿田深部及外围地区,仍存在巨大的找矿潜力。盐源-丽江断裂带可能也是一务与藏东-金沙江.哀牢山斑岩成矿带联系密切而又相对独立的富碱斑岩成矿带。 展开更多
关键词 成岩成矿作用 富碱斑岩 印.亚陆陆碰撞造山过程 喜马拉雅期 北衙金多金属矿田 滇西北
下载PDF
吉林红旗岭地区造山后镁铁-超镁铁岩体的年代测定及其意义 被引量:24
12
作者 张广良 吴福元 《地震地质》 EI CSCD 北大核心 2005年第4期600-608,共9页
吉林省中部红旗岭地区镁铁-超镁铁杂岩广泛发育,年代学资料表明,红旗岭-漂河川岩体形成于晚三叠纪(距今约216Ma),与该区A型花岗岩的年龄相当,但略微年轻一些。岩石学和地球化学特征表明,镁铁-超镁铁岩普遍可见包橄结构,橄榄石晶体平衡... 吉林省中部红旗岭地区镁铁-超镁铁杂岩广泛发育,年代学资料表明,红旗岭-漂河川岩体形成于晚三叠纪(距今约216Ma),与该区A型花岗岩的年龄相当,但略微年轻一些。岩石学和地球化学特征表明,镁铁-超镁铁岩普遍可见包橄结构,橄榄石晶体平衡岩浆属于高MgO玄武质岩浆,微量元素和同位素模拟结果均显示岩浆源区主要为亏损地幔或新生岩石圈地幔。根据这些结果,同时结合相关研究,提出这些镁铁-超镁铁杂岩体的形成与该区大量造山后A型花岗岩带的形成相吻合,其形成主要是由于造山后期岩石圈板块的拆沉减薄效应,软流圈地幔上隆及大量幔源岩浆上侵,底垫于地壳底部,并经历了强烈的结晶分异作用。 展开更多
关键词 镁铁-超镁铁杂岩 年代学 造山后 岩石成因 红旗岭地区
下载PDF
新疆阿拉套山西段察哈乌苏二长花岗岩成因及构造意义 被引量:2
13
作者 王建中 魏立勇 +2 位作者 段俊 赵军 杨瀚文 《西北地质》 CSCD 北大核心 2021年第3期10-26,共17页
察哈乌苏岩体位于新疆西天山阿拉套山南缘的西段,大地构造位置属阿拉套山南缘泥盆纪—石炭纪弧后盆地,岩体主要由灰白色中粒二长花岗岩、灰白色中细粒二云二长花岗岩组成。岩石地球化学数据显示,岩石中SiO_(2)、Al_(2)O_(3)、碱含量较高... 察哈乌苏岩体位于新疆西天山阿拉套山南缘的西段,大地构造位置属阿拉套山南缘泥盆纪—石炭纪弧后盆地,岩体主要由灰白色中粒二长花岗岩、灰白色中细粒二云二长花岗岩组成。岩石地球化学数据显示,岩石中SiO_(2)、Al_(2)O_(3)、碱含量较高,A/CNK=1.08~1.14,属过铝质高钾钙碱性花岗岩系列;轻稀土元素相对富集,重稀土元素相对亏损,稀土元素配分模式呈轻稀土富集的缓右倾型,具有明显的Eu负异常;强烈富集大离子亲石元素(LILE)Rb、Th、U、K、Hf,亏损高场强元素(HFSE)Ba、Nb、Ta、Sr、P、Ti;岩石具有较低的I_(Sr)值(0.7015~0.7026)。综合研究,表明察哈乌苏二长花岗岩为低Sr高分异S型花岗岩,兼具A型花岗岩的特征,是长石分离结晶的产物。二长花岗岩具有较高的正εNd(t)值(+0.37~+1.18);高的Th、Ta含量及Th/Ta值(6.12~8.54)指示岩浆源区为亏损地幔,但受到古老地壳物质同化混染的影响。构造判别图解中所有样品落入火山弧花岗岩和同碰撞花岗岩的交界部位,更靠近同碰撞花岗岩区域。察哈乌苏岩体的侵位时代为313 Ma,结合区域地质背景,笔者认为伊犁微板块在310 Ma前已与准噶尔微板块碰合,北天山洋盆闭合时限早于晚石炭世末,310 Ma以后,阿拉套山地区逐渐进入后碰撞伸展阶段。因此,察哈乌苏二长花岗岩应为后碰撞花岗岩,岩体形成于同碰撞挤压向后碰撞伸展转换过渡阶段的张性环境,是幔源玄武质岩浆底侵和发生ACF作用的结果,其构造背景可能为活动大陆边缘。 展开更多
关键词 高分异S型花岗岩 后碰撞花岗岩 亏损地幔 岩石成因 AFC过程 阿拉套山
下载PDF
Adakitic rocks at convergent plate boundaries:Compositions and petrogenesis 被引量:10
14
作者 Qiang Wang Lulu Hao +9 位作者 Xiuzheng Zhang Jinsheng Zhou Jun Wang Qiwei Li Lin Ma Long Zhang Yue Qi Gongjian Tang Wei Dan Jingjing Fan 《Science China Earth Sciences》 SCIE EI CSCD 2020年第12期1992-2016,共25页
Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements,depletion in heavy rare-earth elements,positive to negligible Eu and Sr anomalies,and high La/Yb and Sr/Y ra... Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements,depletion in heavy rare-earth elements,positive to negligible Eu and Sr anomalies,and high La/Yb and Sr/Y ratios.Cenozoic adakitic rocks generated by partial melting of subducted oceanic crust(slab)under eclogite-facies conditions(i.e.,the original definition of“adakite”)occur mainly in Pacific Rim volcanic arcs(intra-oceanic,continental,and continental-margin island arcs),whereas those generated by partial melting of thickened lower crust occur mainly in Tethyan Tibetan collisional orogens.In volcanic arcs,adakitic melts derived from the melting of subducted oceanic crust metasomatize the mantle wedge to form a unique rock suite comprising adakite-adakite-type high-Mg andesite-Piip-type high-Mg andesite-Nb-rich basalt-boninite.This suite differs from the basalt-andesite-dacite-rhyolite suite formed from mantle wedge metasomatized by fluids derived from subducted oceanic crust.Previously published data indicate that partial melting of mafic rocks can generate adakitic magmas under pressure,temperature,and hydrous conditions of 1.2-3.0 GPa,800-1000℃,and 1.5-6.0 wt.%H_(2)O,respectively,leaving residual minerals of garnet and rutile with little or no plagioclase.Cenozoic Au and Cu deposits occur proximally to adakitic rocks,with host rocks of some deposits actually being adakitic rocks.Adakitic rocks thus have important implications for both deep-Earth dynamics and Cu-Au mineralization/exploration.Although studies of Cenozoic adakitic rocks have made many important advances,there remain weaknesses in some important areas such as their tectonic settings,petrogenesis,magma sources,melt-mantle interactions of pre-Cenozoic adakitic rocks,and their relationship with the onset of plate tectonics and crustal growth.Future research directions are likely to involve(1)the generation of adakitic magmas by experimental simulations of partial melting of different types of rock(including intermediate-acid rocks)and magma fractional crystallization at different temperatures and pressures,(2)the relationship between magma reservoir evolution and the formation of adakitic rocks,(3)the tectonic setting and petrogenesis of pre-Cenozoic adakitic rocks and related geodynamic processes,(4)interactions between slab melts and the mantle wedge,(5)the formation of Archean adakitic tonalite-trondhjemite-granodiorite and its link to the onset of plate tectonics and crustal growth,and(6)the relationship between the formation of adakitic rocks and metal mineralization in different tectonic settings. 展开更多
关键词 ADAKITE Subduction zone Collisional zone petrogenesis METALLOGENESIS Dynamic process
原文传递
Magmatic-Hydrothermal Superlarge Metallogenic Systems——A Case Study of the Nannihu Ore Field 被引量:11
15
作者 王长明 成秋明 +2 位作者 张寿庭 邓军 谢淑云 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期391-403,共13页
Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢),... Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢), and Shangfang (上房) deposits, represents a superlarge skarn-porphyry molybdenum (-tungsten) accumulation. Outside the ore field, there are some hydrothermal lead-zinc-silver deposits found in recent years, for example, the Lengshuibeigou (冷水北沟), Yindonggou (银涧沟), Yangshuwa (杨树凹), and Yinhegou (银河沟) deposits. Ore-forming fluid geochemistry indicates that these deposits belong to the same metallogenic system. The hydrothermal solutions were mainly derived from primary magmatic water in the early stage and from the mixture of the primary magmatic water and meteoric water in the later stage, with an obvious decreasing tendency in temperature, salinity and gas-liquid ratio of fluid inclusions. Sulfur and lead isotope data show that the ore-forming substances and related porphyries were mainly derived from the lower crust, and a hidden magmatic chamber is indicated by aeromagnetic anomaly and drill hole data indicate that the Nannihu granite body extends to being larger and larger with depth increasing. The large-scale mineralization was the consequence of lithospheric extension during the late stage of the tectonic regime when the main compressional stress changed from NS-trending to EW-trending. 展开更多
关键词 magmatic-hydrothermal metallogenic system superlarge deposit ore-forming fluid dynamic process Nannihu ore field
下载PDF
Genesis of the Xinqiao Gold-Sulfide Orefield, Anhui Province, China 被引量:2
16
作者 ZANGWenshuan WUGanguo +4 位作者 ZHANGDa LIJinwen ZHANGXiangxin LIUAihua ZHANGZhongyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期548-557,共10页
The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield ... The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion. 展开更多
关键词 Xinqiao orefield geological characteristics ore-forming process massive sulphide orebody
下载PDF
A Research Review of Iron Oxide Copper-Gold Deposits 被引量:1
17
作者 LIU Shaofeng FU Shuixing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1341-1352,共12页
Iron oxide copper-gold (IOCG) deposits are a research focus of the current ore deposit geology, and have attracted much attention among the worldwide geologists and exploration experts due to their shallow depth, a ... Iron oxide copper-gold (IOCG) deposits are a research focus of the current ore deposit geology, and have attracted much attention among the worldwide geologists and exploration experts due to their shallow depth, a wide variety of mineral species and large scale. This paper presents a review of the present IOCG deposits research, which includes the definition of IOCG deposits, temporal and spatial distribution, ore-forming environments, ore-forming magmatic rocks, their geological features, ore-controlling structures and ore-bearing rocks, mineralized alteration zoning, and their genesis and ore-forming process. This work also proposed the ore prospecting direction of IOCG deposits from a trinity model of metaUogenic geological bodies, metallogenic structure surface and metailogenic information signs, and discussed the existing problems of the IOCG deposits research. 展开更多
关键词 IOCG deposits geological features ore-forming environments ore-forming process prospecting model
下载PDF
Contrast in Fluid M etallogeny between the Tianmashan Au-S Deposit and the Datuanshan Cu Deposit in Tongling,Anhui Province 被引量:2
18
作者 LEE Hyun Koo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第1期116-124,共9页
A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongli... A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion 展开更多
关键词 fluid inclusion fluid ore-forming process contrast in fluid metallogeny Au-S ore deposit Cu ore deposit magmatic fluid groundwater fluid TONGLING Anhui Province
下载PDF
Geochronological Significance of the Post-Orogenic Mafic-Ultramafic Rocks in the Hongqiling Area of Jilin Province, Northeast China
19
作者 Zhang Guangliang Wu Fuyuan 《Earthquake Research in China》 2006年第2期216-224,共9页
Mafic-uitramafic complexes are widespread in Hongqiling in central Jiulin Province, NE China. The Hongqiling complex comprises pyroxenite, olivine websterite, lberzolite, gabbro and leucogabbro. Based on the latest ge... Mafic-uitramafic complexes are widespread in Hongqiling in central Jiulin Province, NE China. The Hongqiling complex comprises pyroxenite, olivine websterite, lberzolite, gabbro and leucogabbro. Based on the latest geochronological results, these intrusions yield a zircon U-Pb age of about 216 Ma, implying that they emplaced in the late Triassic period and that the mafic-uitramafic complexes are post-orogenic in origin. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than syn-orogenic granitic magmatism. The composition of the parent magma during the equilibration of the accumulated olivine crystallizing is basaltic with high MgO, and it comes from depleted or juvenile lithospheric mantle, according to the results of trace elements and Sr-Nd isotopes. Amount of crustal material contaminated the magmatic source, implying that the mafic-uitramafic rocks originate from the mixing product of crust- and mantle-derived magma. Therefore, the magmatic source was contaminated by an amount of crustal material, and the subsequent crystal fractionation resulted in the Cu-Ni mineralization. Dynamic analyses indicate that, after the collision of the North China Craton and Jiamusi Massif, the lithospheric delamination during post-orogeny resulted in the upwelling of asthenosphere and the intruding of the mass and underplating of the mantle-derived magma, which led to the formation of the primary mafic-uitramafic magma due to the mantle-derived magma and partial melting of the lower crust. This result suggests that the mafic-uitramafic complexes belong to a typically important magmatic suite that evolved during post-orogenic processes, and they were exposed as maficultramafic dyke swarms that existed in the post-orogenic extension environment. It also implies that the orogenic process finished ultimately in this regional geological setting. The widespread occurrence of mafic-uitramafic complexes in the Xing'an-Mongolia Orogenic Belt in NE China and in the Altay-Tianshan-Junggar Orogenic Belt in Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as a heat source for associated late-stage granitic magmas. 展开更多
关键词 Mafic-uitramafic complexes GEOCHRONOLOGY Post-orogenic processes petrogenesis Hongqiling-Piaohechuan area
下载PDF
Ore Forming Systems (Fe, Ti, Ni, Pb, Zn, Noble Metals) of the Transbaikalia Neoproterozoic Greenstone Belts
20
作者 Alexander Vasilyevich Tatarinov Lyubov Ilyinichna Yalovik 《Geomaterials》 2020年第3期66-90,共25页
It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metal... It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism). 展开更多
关键词 ore-forming Systems Noble Metals Ore-Generating processes Dynamometamorphism Age Evolution
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部