XRF and EDX analyses were carried out on 18 batches of representative raw samples to determine the distribution of major chemical elements in the petroleum source rocks of Donga and Yogou formations of Termit sediment...XRF and EDX analyses were carried out on 18 batches of representative raw samples to determine the distribution of major chemical elements in the petroleum source rocks of Donga and Yogou formations of Termit sedimentary basin. The chemical composition of these formations is dominated by silicon (Si), aluminum (Al) and iron (Fe). This is consistent with the oxide composition, which is also dominated by silicon oxide (SiO2), aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) and iron monoxide (FeO). No less important chemical elements are calcium (Ca), potassium (K), sulfur (S), titanium (Ti), magnesium (Mg), manganese (Mn) and barium (Ba), as well as some of their oxides. All these major chemical elements are carried by silicate detrital minerals associated with pyrite and goethite and/or clay minerals such as kaolinite and interstratified illite, smectite and chlorite. This trend is illustrated by the values of the Si/Al and SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios.展开更多
Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided int...Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age.展开更多
The development of globally distributed Phanerozoic petroleum source rocks is concentrated on time intervals, which correlate convincingly with climatic driven glaciation epochs of Earth’s history, repeated every 150...The development of globally distributed Phanerozoic petroleum source rocks is concentrated on time intervals, which correlate convincingly with climatic driven glaciation epochs of Earth’s history, repeated every 150 million years, and during sea level high stands and maxima of global magmatism with a period of 300 million years. The 150 million year periodicity appears to be related to the path of the solar system through the spiral arms of the Milky Way and the 300 million year periodicity to changes of the spiral system. The spiral arms are preferred birth places of new stars, of which the larger ones have only smaller lifespans. Their preliminary deaths ended with explosions and selectively with the development of so-called white dwarfs, neutron stars or black holes. The times of the explosions of intermediate (sun-like) stars can be determined by measuring the present brightness of the dwarfs. Not surprisingly the last two maxima of recordable near solar system star explosions took place during the presumably spiral arms driven glacial epochs in Eocene to present and Upper Jurassic times. Such near solar system star explosions may have been the source of intense neutrino showers, cosmic rays and star dust. This dust contained all kinds of chemical elements, including phosphorus and uranium. Such cosmic phosphorus may have supported, through fertilizing, the distribution of life on Earth additionally to local phosphorus resources via bloom of biota in lakes and oceans and the enhanced growth of plants on land across all climatic zones. Subsequently it maintained the development of petroleum source rocks of all organic matter types within black shales and coals. Via the distribution of remnants of exploding stars—mainly white dwarfs, but neutron stars and black holes have to be counted as well—a cosmic contribution can therefore casually linked to the deposition of petroleum source rocks on Earth, not only purely correlatively by their contemporaneous appearances.展开更多
More and more evidence indicates that organic matter (OM) in immature organic-rich sediments and sedimentary rocks is chemically adsorbed onto the outer surfaces of minerals and into interlayer (inner) surfaces of sme...More and more evidence indicates that organic matter (OM) in immature organic-rich sediments and sedimentary rocks is chemically adsorbed onto the outer surfaces of minerals and into interlayer (inner) surfaces of smectitic clay minerals in the form of amorphous molecular-scale carbon. But there have been few reports about the occurrence of highly mature OM in marine black shales (petroleum source rocks). The occurrence of highly mature OM in the black shales of basal Cambrian from northern Tarim Basin is studied in this paper. Based on the comprehensive analyses of total organic carbon contents (TOC), maximum thermolysis temperatures (T-max) of OM, mineral surface areas (MSA), and scanning electronic microscopic (SEM) and transmission electronic microscopic (TEM) observations of the black shales, it is concluded that the highly mature OM in the marine black shales of the basal Cambrian from northern Tarim Basin occurs in particulates ranging in size from 1 to 5 μm in diameter. Through the contrast of the occurrence of the highly mature OM in the black shales with that of the immature ones in modern marine continental margin sediments, some scientific problems are proposed, which are worth to study further in detail.展开更多
The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China.It is presently also the deepest basin for petroleum exploration and development in the world.There are two main sets of marine...The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China.It is presently also the deepest basin for petroleum exploration and development in the world.There are two main sets of marine Source Rocks(SRs)in the Tarim Basin,namely the high over-mature Cambrian-Lower Ordovician(∈-O_(1))and the moderately mature Middle-Upper Ordovician(O_(2-3)).The characteristic biomarkers of SRs and oils indicate that the main origin of the marine petroleum is a mixed source of∈-O_(1) and O_(2-3) SRs.With increasing burial,the hydrocarbon contribution of the∈-O_(1) SRs gradually increases.Accompanied by the superposition of multi-stage hydrocarbon-generation of the SRs and various secondary alteration processes,the emergence and abnormal enrichment of terpenoids,thiophene and trimethylaryl isoprenoid in deep reservoirs indicate a complex genesis of various deep oils and gases.Through the analysis of the biofacies and sedimentary environments of the∈-O_(1) and O_(2-3) SRs,it is shown that the lower Paleozoic high-quality SRs in the Tarim Basin were mainly deposited in a passive continental margin and the gentle slope of the platform,deep-water shelf and slope facies,which has exhibited a good response to the local tectonic-sedimentary environment.The slope of the paleo-uplift is the mutual area for the development of carbonate reservoirs and the deposition of marine SRs,which would be favorable for the accumulation of petroleum.Due to the characteristics of low ground temperature,the latest rapid and deep burial does not cause massive oil-cracking in the paleo-uplift and slope area.Therefore,it is speculated that the marine reservoirs in the slope of the Tabei Uplift are likely to be a favorable area for deep petroleum exploration,while the oilcracking gas would be a potential reserve around the west margin of the Manjiaer Depression.Hydrocarbons were generated from various unit SRs,mainly migrating along the lateral unconformities or reservoirs and the vertical faults.They eventually brought up three major types of exploration fields:middle and lower Cambrian salt-related assemblages,dolomite inner reservoirs and Middle and Lower Ordovician oil-bearing karst,which would become the most favorable target of marine ultra-deep exploration in the Tarim Basin.展开更多
The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organ...The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banqiao Sag. This study enhances the great prospect of oil and gas production in the Banqiao Sag.展开更多
Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and the...Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.展开更多
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
The State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum (Beijing) was designated to be a state key laboratory by the Ministry of Science and Technology in 2007. It was founde...The State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum (Beijing) was designated to be a state key laboratory by the Ministry of Science and Technology in 2007. It was founded on the basis of the Key Laboratory of Hydrocarbon Accumulation Mechanisms of the Ministry of Education and CNPC Key Laboratory of Geophysics. Professor Hao Fang serves as the director of the laboratory. His main research interest is in hydrocarbon accumulation mechanisms.展开更多
Organic matter was experimentally extracted by supercritical fiuids (CO2 +1% isopropanol) from petroleum source rocks of different thermo-maturities at different buried depths in the same stratigraphic unit in the D...Organic matter was experimentally extracted by supercritical fiuids (CO2 +1% isopropanol) from petroleum source rocks of different thermo-maturities at different buried depths in the same stratigraphic unit in the Dongying Basin. The results show that supercritical fluid extraction (SFE) is more effective than Soxhlet extraction (SE), with higher amounts and greater varieties of hydrocarbons and soluble organic matter becoming extractive. The supercritical CO2 extraction is therefore considered more valuable in evaluation of petroleum source rocks and oil resources, particularly those of immature types.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i...The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.展开更多
The petroleum paleo-productivity and generative potential of the Nkporo and Awgu shales in the Lower Benue Trough (LBT) were studied. Major oxides were determined using Spectro Ciros Inductively-coupled plasma optical...The petroleum paleo-productivity and generative potential of the Nkporo and Awgu shales in the Lower Benue Trough (LBT) were studied. Major oxides were determined using Spectro Ciros Inductively-coupled plasma optical emission spectrometer (ICP-OES) while trace and rare earth elements were determined using an ELAN 9000 Inductively-coupled plasma mass spectrometer (ICP-MS). The shales have Co/Ni ratios greater than 0.1 suggesting oil source rocks with more marine source input due to brief marine incursion in the transition zone after deposition. The very low Ni values and moderate V values, and a lack of correlation between the TOC and sulphur content, suggests that the organic matter is of terrestrial Type Ⅲ;and the very low paleo-productivity (Ba/Al and P/Ti ratios) suggests that the organic matter is of terrestrial origin. The low V/Ni values of the Nkporo and Awgu shales (Av. ≈ 4) and the high metal concentrations indicate a matured status. From the K/Rb ratios of the Nkporo (191–259) and Awgu shales (198–261), it can be deduced that the organic matter within the shales experienced a considerable loss of K and the shales are mature to generate gaseous hydrocarbons.展开更多
The bidding blocks are distributed in different regions of China,There are seven blocks in W est China,and seven blocks in Northeast China,the other twelve blocks are from North and Central China.All the blocks are lo...The bidding blocks are distributed in different regions of China,There are seven blocks in W est China,and seven blocks in Northeast China,the other twelve blocks are from North and Central China.All the blocks are located in prospective sedimentary basins with different geological condi-tions,some are from oil produced basin such as Bohai Bay Basin which is a prolific basin,it's production accounts for 50%in total prodcuction of China.Based on estimation,the total potential resource of oil is 3.55 billion tons and gas is 800 billion cubic meters in bidding areas.As far as the exploratory objectives are concerned,there are Paleozoic.Mesozoic and Cenozoic strata,as well as continental clastic and marine一carbonate re-servoir.These provide more choices for foreign companies.In addition,most of bidding blocks are adjacent to transport lines,so communication and petroleum transportation are very convenient.展开更多
文摘XRF and EDX analyses were carried out on 18 batches of representative raw samples to determine the distribution of major chemical elements in the petroleum source rocks of Donga and Yogou formations of Termit sedimentary basin. The chemical composition of these formations is dominated by silicon (Si), aluminum (Al) and iron (Fe). This is consistent with the oxide composition, which is also dominated by silicon oxide (SiO2), aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) and iron monoxide (FeO). No less important chemical elements are calcium (Ca), potassium (K), sulfur (S), titanium (Ti), magnesium (Mg), manganese (Mn) and barium (Ba), as well as some of their oxides. All these major chemical elements are carried by silicate detrital minerals associated with pyrite and goethite and/or clay minerals such as kaolinite and interstratified illite, smectite and chlorite. This trend is illustrated by the values of the Si/Al and SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2014CB239000)China National Science and Technology Major Project(2016ZX05046)
文摘Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age.
文摘The development of globally distributed Phanerozoic petroleum source rocks is concentrated on time intervals, which correlate convincingly with climatic driven glaciation epochs of Earth’s history, repeated every 150 million years, and during sea level high stands and maxima of global magmatism with a period of 300 million years. The 150 million year periodicity appears to be related to the path of the solar system through the spiral arms of the Milky Way and the 300 million year periodicity to changes of the spiral system. The spiral arms are preferred birth places of new stars, of which the larger ones have only smaller lifespans. Their preliminary deaths ended with explosions and selectively with the development of so-called white dwarfs, neutron stars or black holes. The times of the explosions of intermediate (sun-like) stars can be determined by measuring the present brightness of the dwarfs. Not surprisingly the last two maxima of recordable near solar system star explosions took place during the presumably spiral arms driven glacial epochs in Eocene to present and Upper Jurassic times. Such near solar system star explosions may have been the source of intense neutrino showers, cosmic rays and star dust. This dust contained all kinds of chemical elements, including phosphorus and uranium. Such cosmic phosphorus may have supported, through fertilizing, the distribution of life on Earth additionally to local phosphorus resources via bloom of biota in lakes and oceans and the enhanced growth of plants on land across all climatic zones. Subsequently it maintained the development of petroleum source rocks of all organic matter types within black shales and coals. Via the distribution of remnants of exploding stars—mainly white dwarfs, but neutron stars and black holes have to be counted as well—a cosmic contribution can therefore casually linked to the deposition of petroleum source rocks on Earth, not only purely correlatively by their contemporaneous appearances.
文摘More and more evidence indicates that organic matter (OM) in immature organic-rich sediments and sedimentary rocks is chemically adsorbed onto the outer surfaces of minerals and into interlayer (inner) surfaces of smectitic clay minerals in the form of amorphous molecular-scale carbon. But there have been few reports about the occurrence of highly mature OM in marine black shales (petroleum source rocks). The occurrence of highly mature OM in the black shales of basal Cambrian from northern Tarim Basin is studied in this paper. Based on the comprehensive analyses of total organic carbon contents (TOC), maximum thermolysis temperatures (T-max) of OM, mineral surface areas (MSA), and scanning electronic microscopic (SEM) and transmission electronic microscopic (TEM) observations of the black shales, it is concluded that the highly mature OM in the marine black shales of the basal Cambrian from northern Tarim Basin occurs in particulates ranging in size from 1 to 5 μm in diameter. Through the contrast of the occurrence of the highly mature OM in the black shales with that of the immature ones in modern marine continental margin sediments, some scientific problems are proposed, which are worth to study further in detail.
基金funded by the National Key Research and Development Program of China(2017YFC0603101)the Strategic Priority Research Program of the Chinese Academy of Sciences‘Development of Deep Source Rocks and Evolution Mechanism of Hydrocarbon Generation’(XDA14010000)。
文摘The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China.It is presently also the deepest basin for petroleum exploration and development in the world.There are two main sets of marine Source Rocks(SRs)in the Tarim Basin,namely the high over-mature Cambrian-Lower Ordovician(∈-O_(1))and the moderately mature Middle-Upper Ordovician(O_(2-3)).The characteristic biomarkers of SRs and oils indicate that the main origin of the marine petroleum is a mixed source of∈-O_(1) and O_(2-3) SRs.With increasing burial,the hydrocarbon contribution of the∈-O_(1) SRs gradually increases.Accompanied by the superposition of multi-stage hydrocarbon-generation of the SRs and various secondary alteration processes,the emergence and abnormal enrichment of terpenoids,thiophene and trimethylaryl isoprenoid in deep reservoirs indicate a complex genesis of various deep oils and gases.Through the analysis of the biofacies and sedimentary environments of the∈-O_(1) and O_(2-3) SRs,it is shown that the lower Paleozoic high-quality SRs in the Tarim Basin were mainly deposited in a passive continental margin and the gentle slope of the platform,deep-water shelf and slope facies,which has exhibited a good response to the local tectonic-sedimentary environment.The slope of the paleo-uplift is the mutual area for the development of carbonate reservoirs and the deposition of marine SRs,which would be favorable for the accumulation of petroleum.Due to the characteristics of low ground temperature,the latest rapid and deep burial does not cause massive oil-cracking in the paleo-uplift and slope area.Therefore,it is speculated that the marine reservoirs in the slope of the Tabei Uplift are likely to be a favorable area for deep petroleum exploration,while the oilcracking gas would be a potential reserve around the west margin of the Manjiaer Depression.Hydrocarbons were generated from various unit SRs,mainly migrating along the lateral unconformities or reservoirs and the vertical faults.They eventually brought up three major types of exploration fields:middle and lower Cambrian salt-related assemblages,dolomite inner reservoirs and Middle and Lower Ordovician oil-bearing karst,which would become the most favorable target of marine ultra-deep exploration in the Tarim Basin.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603106)。
文摘The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banqiao Sag. This study enhances the great prospect of oil and gas production in the Banqiao Sag.
文摘Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.
基金supported by funding the National Basic Research Program of China (973 Program) and the grant number is 2014CB239000
文摘1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
文摘The State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum (Beijing) was designated to be a state key laboratory by the Ministry of Science and Technology in 2007. It was founded on the basis of the Key Laboratory of Hydrocarbon Accumulation Mechanisms of the Ministry of Education and CNPC Key Laboratory of Geophysics. Professor Hao Fang serves as the director of the laboratory. His main research interest is in hydrocarbon accumulation mechanisms.
文摘Organic matter was experimentally extracted by supercritical fiuids (CO2 +1% isopropanol) from petroleum source rocks of different thermo-maturities at different buried depths in the same stratigraphic unit in the Dongying Basin. The results show that supercritical fluid extraction (SFE) is more effective than Soxhlet extraction (SE), with higher amounts and greater varieties of hydrocarbons and soluble organic matter becoming extractive. The supercritical CO2 extraction is therefore considered more valuable in evaluation of petroleum source rocks and oil resources, particularly those of immature types.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
基金funded by the“Key Scientific Issues and Innovative Technology Research on Oil and Gas Resource Exploration in China Sea Risk Exploration Area”(Grant No.CCL2022RCPS2017XNN)from CNOOC Research Institute,Beijing.
文摘The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.
文摘The petroleum paleo-productivity and generative potential of the Nkporo and Awgu shales in the Lower Benue Trough (LBT) were studied. Major oxides were determined using Spectro Ciros Inductively-coupled plasma optical emission spectrometer (ICP-OES) while trace and rare earth elements were determined using an ELAN 9000 Inductively-coupled plasma mass spectrometer (ICP-MS). The shales have Co/Ni ratios greater than 0.1 suggesting oil source rocks with more marine source input due to brief marine incursion in the transition zone after deposition. The very low Ni values and moderate V values, and a lack of correlation between the TOC and sulphur content, suggests that the organic matter is of terrestrial Type Ⅲ;and the very low paleo-productivity (Ba/Al and P/Ti ratios) suggests that the organic matter is of terrestrial origin. The low V/Ni values of the Nkporo and Awgu shales (Av. ≈ 4) and the high metal concentrations indicate a matured status. From the K/Rb ratios of the Nkporo (191–259) and Awgu shales (198–261), it can be deduced that the organic matter within the shales experienced a considerable loss of K and the shales are mature to generate gaseous hydrocarbons.
文摘The bidding blocks are distributed in different regions of China,There are seven blocks in W est China,and seven blocks in Northeast China,the other twelve blocks are from North and Central China.All the blocks are located in prospective sedimentary basins with different geological condi-tions,some are from oil produced basin such as Bohai Bay Basin which is a prolific basin,it's production accounts for 50%in total prodcuction of China.Based on estimation,the total potential resource of oil is 3.55 billion tons and gas is 800 billion cubic meters in bidding areas.As far as the exploratory objectives are concerned,there are Paleozoic.Mesozoic and Cenozoic strata,as well as continental clastic and marine一carbonate re-servoir.These provide more choices for foreign companies.In addition,most of bidding blocks are adjacent to transport lines,so communication and petroleum transportation are very convenient.