The degradation behavior of biodegradable Mg alloys has become a research hotspot in the fields about biodegradable metallic materials.While the most of the related publications mainly focused on the degradation rate ...The degradation behavior of biodegradable Mg alloys has become a research hotspot in the fields about biodegradable metallic materials.While the most of the related publications mainly focused on the degradation rate of Mg-based materials,but rare to care about the changes of their mechanical properties during the immersion period,which can significantly affect their service performance.The link between residual strength and Mg degradation is not appreciated enough.In this work,a series media were constructed based on Hanks’solution,the effects of inorganic ions on the degradation rate and mechanical integrity of Mg-Zn-Y-Nd alloy were investigated.The results indicated that the degradation behavior of Mg alloy was mainly controlled by degradation products and there is no direct correspondence between the degradation rate change and mechanical integrity of Mg alloy.The relevant findings are beneficial for selecting the monitoring index in Mg corrosion tests and evaluating the service reliability of Mg alloys for biomedical applications.展开更多
Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys...Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.展开更多
In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at differe...In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated.Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix.EX400 with higher volume fraction of non-DRXed grains exhibited higher strength,which was mainly due to strong texture,high dislocation density,and high volume fraction of lamellar LPSO.The EX420 with higher volume fraction of DRXed grains showed higher degradation rate,which was mainly due to the higher density of grain boundary.The EX400 exhibited excellent comprehensive properties with tensile yield strength(TYS)of 334 MPa,ultimate tensile strength(UTS)of 484 MPa and elongation(EL)of 7.4%,ultimate compressive strength(UCS)of 638 MPa and compressive yield strength(CYS)of 443 MPa,degradation rate of 86.1 mg/cm^(2)/h at 93℃in 3 wt.%KCl solution.展开更多
Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated hi...Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated high specific surface area,and the three-dimensional interconnected pores provided fast pervasive invasion entrance for the corrosive medium,rising concern of the structural integrity during the degradation.To clarify the structural evolution of the three-dimensional(3D)porous structure,semi-static immersion tests were carried out to evaluate the degradation performance in our previous study.Nevertheless,dynamic immersion tests mimicking the in vivo circulatory fluid through the interconnected porous structure have yet been investigated.Moreover,the effects of dynamic flow rates on the degradation deposition behavior of 3D porous Mg scaffolds were rarely reported.In this study,Mg scaffolds degraded at three flow rates exhibited different degradation rates and deposition process.A flow rate of 0.5 m L/min introduced maximum drop of porosity by accumulated deposition products.The deposition products provided limited protection against the degradation process at a flow rate of 1.0 m L/min.The three-dimensional interconnected porous structure of Mg scaffold degraded at 2.0 m L/min well retained after 14 days showing the best interconnectivity resistance to the degradation deposition process.The dynamic immersion tests disclosed the reason for the different degradation rates on account of flow rates,which may bring insight into understanding of varied in vivo degradation rates related to implantation sites.展开更多
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s...Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.展开更多
In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order...In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.展开更多
The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were...The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were observed in the solution. The aims of the present study were to assess the degradation rates of FLT in other alkaline solutions and clarify the chemical structures of the four degradation products in order to obtain basic data for designing an enema for inflammatory bowel disease. The apparent degradation rate constants in 0.05 M NaOH and 0.1 M NaOH:CH_3CN=1:1 were 0.472 ± 0.013 h^(-1) and 0.154 ± 0.000 h^(-1)(n=3), respectively. The chemical structures of products 1–4 in 0.1 M NaOH:methanol=1:1 were revealed by nuclear magnetic resonance(NMR)and mass spectrometry data. The chemical structure of products 2 was that the 17-position of the thioester moiety of FLT was substituted by a carboxylic acid. The degradation product in 0.1 M NaOH:CH_3CN=1:1 was found to be product 2 based on ~1H NMR data. The degradation product in 0.05 M NaOH was considered to be product 2 based on the retention time of HPLC. These results are useful for detecting the degradation products of FLT by enzymes of the intestinal bacterial flora in the large intestine after dosing FLT as an enema.展开更多
Land along the Bomboré River in the rural commune of Mogtédo in Burkina Faso is experiencing degradation. The explanatory causes of this degradation constitute the subject of this study. To do this, a survey...Land along the Bomboré River in the rural commune of Mogtédo in Burkina Faso is experiencing degradation. The explanatory causes of this degradation constitute the subject of this study. To do this, a survey was conducted among agricultural producers deployed along the watercourse. Soil profiles were described and samples were taken to analyze pH, soil organic carbon, soil organic matter, total nitrogen, and texture. The RUSLE model approach based on landstat8 OLI/TIRS and SRTM satellite images dated December 17, 2021 with fairly good radiometric, spatial, and spectral resolution was used to calculate the land loss rate. In terms of results, the potentially irrigable areas that spread out on both sides of the banks of the river cover 209.23 ha with a perimeter of 6.16 km. The number of irrigators is 26 producers and they grow 17.92 ha of vegetables. Soil analyzes indicate the presence of a moderate acid on the vertisol with a pH between 5.57 and 5.86. On the depth 0 - 30 cm of the horizon, the color of the horizons ranges from 5YR4/2 on the talweg and on the right bank to 7.5YR3/2 on the left bank and presents no risk of salinity because the electrical conductivity measured is less than 1dS/cm. The diagnosis of hydromechanical equipment shows that producers use 46 motor pumps for irrigation, of which 15 motor pumps run on gasoline and 31 motor pumps on butane gas with a ratio of 1.7 motor pumps per producer. The number of Polyvinyl Chloride (PVC) pipes used by producers in combination with a motor pump gives an average of 44 per farmer. In terms of mineral fertilization, the gross doses used by producers are 415.53 kg/ha of NPK and 201.55 kg/ha of urea, while the quantities of phytosanitary products are 3.99 l/ha of pesticides and 1.42 l/ha of herbicides. Agricultural activities emit about 222,436.66 kgCO<sub>2</sub>eq into the atmosphere, whose emissions from motor pumps represent 84.52% of these total emissions. The land loss estimate gives an average rate of 2.30 t/ha/year of land loss. This loss is due to the effects of poor agricultural practices, water erosion, and the drainage channels and gullies created by the anarchic installation of dwellings around the edges of the river. This study calls for more monitoring actions to sustainably safeguard the soil and water resources of this river which contribute to the survival of more than 73,214 inhabitants.展开更多
Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing wi...Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing with the widely used Haldane model,which is greatly dependent on the initial phenol concentration,our model can be used to simulate the phenol degradation process in a wide range of initial phenol concentration by using only one set of model parameters ,Therefore,this new kinetic model has much more potential applications to industrial design and operation.展开更多
The current concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soils contaminated with Chinese technical product sodium pentachlorophenate ( Na- PCP). The estimated ...The current concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soils contaminated with Chinese technical product sodium pentachlorophenate ( Na- PCP). The estimated half-life of octachlorodioxin (OCDD) was about 14 years in contaminated soils based on the local historical record and mass balance calculation during the past 43 years( 1960-2003). The isomer profiles remained the same regardless of paddy field soil or riverbank soil. The results indicated that the congenerspecific information was efficient in estimating the PCDD/Fs fate in contaminated soils.展开更多
The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding...The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding device, and then immersed into phosphate buffer saline (PBS) for in vitro degradation experiments. The mechanisms of degradation and the degradation rate were characterized by the change in molecular weight and reduction in specimen mass. In addition, the effects of processing temperature and the geometry of the formed PSADT tablets on the rate of degradation were studied. The surface morphology at different degradation times was observed by scanning electron microscopy (SEM). The experimental results showed that PSADT exhibited sur^hce erosion due to the fact that near zero-order degradation kinetics was observed during its degradation process. Moreover, it is found that the geometry of tablets played an important role on the rate of degradation, while the processing temperature had no significant effect on the PSADT degradation rate.展开更多
Degradation rate of feed proteins in rumen is a basic indicator of new intestinal protein system of ruminants. In this paper, determination methods of degradation rate in tureen including in-vivo method, nylon bag met...Degradation rate of feed proteins in rumen is a basic indicator of new intestinal protein system of ruminants. In this paper, determination methods of degradation rate in tureen including in-vivo method, nylon bag method and artificial rumen method are compared in order to provide a reference for animal nutrition.展开更多
To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1...To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1 in aqueous acetonitrile;When the radiation dose was below 9 kGy, the degradation of FB1 in corn was not significant. The degradation rates of FB1 with concentrations of 0.8 mg/ml, 10.0 μg/ml, 1.0 μg/ml and 50 ng/ml after irradiation at 9 kGy were 22.5%, 51.0%, 59.0% and 64.8% respectively; when irradiation dose was increased to 100 kGy, the degrada-tion rate of FB1 with concentration of 0.8 mg/ml was up to 90%, and it was nearly 100% when irradiation dose was increased to 200 kGy. No representative products of FB1 were detected by LC/MS/MS analysis.展开更多
As-extruded Mg-Er-Ni alloys with different volume fractions of long-period stacking ordered(LPSO)phase and density of lamellar γ' phase were prepared,and the microstructure,mechanical,and degradation properties w...As-extruded Mg-Er-Ni alloys with different volume fractions of long-period stacking ordered(LPSO)phase and density of lamellar γ' phase were prepared,and the microstructure,mechanical,and degradation properties were investigated.Coupling the bulk LPSO phase and the lamellar γ' phase,and controlling the dynamic recrystallization processes during deformation by adjusting the volume fraction of LPSO and the density of the γ' phase,a synergistic increase in strength and degradation rate can be achieved.On the one hand,the increase in corrosion rate was related to the increased volume fraction of the bulk LPSO phase and the densities of the lamellar γ' phase,which provide more galvanic corrosion.Moreover,high densities of the lamellar γ' phase can provide more corrosion interface by inhibiting the recrystallization process to refine dynamic recrystallized(DRXed)grains during the hot extrusion.On the other hand,the ultimate tensile strength(UTS)and tensile yield strength(TYS)of the Mg-Er-Ni alloy increased from 345 and 265 MPa to 514 MPa and 358 MPa,respectively,which was mainly attributed to grain boundary and texture strengthening,bulk LPSO phase and lamellar γ' phase strengthening.Overall,Mg^(-1)4Er-4Ni alloy,which contains the highest volume fraction bulk LPSO phase and the densities of lamellar γ' phase,re-alized a synergistic enhancement of strength and degradation rate.The UTS,TYS,and degradation rate of Mg^(-1)4Er-4Ni were 514 MPa,358 MPa,and 142.5 mg cm^(-2)h^(-1)(3 wt%KCl solution at 93◦C),respectively.This research provides new insight into developing Mg alloys with high strength and degradation rates for fracturing tool materials in the application of oil and gas exploitation in harsh environments.展开更多
The new biofilm-electrode method was used for the phenol degradation, because of its low current requirement. The biofilm-electrode reactor consisted of immobilized degrading bacteria on Ti electrode as cathode and Ti...The new biofilm-electrode method was used for the phenol degradation, because of its low current requirement. The biofilm-electrode reactor consisted of immobilized degrading bacteria on Ti electrode as cathode and Ti/PbO2 electrode as anode. With the biofilmelectrode reactor in a divided electrolytic cell, the phenol degradation rate could achieve 100% at 18 h which was higher than using traditional methods, such as biological or electrochemical methods. Chemical oxygen demand (COD) removal rate of the biofilmelectrode reactor was also greater than that using biological and electrochemical method, and could reach 80% at 16 h. The results suggested that the biofilm-electrode reactor system can be used to treat wastewater with phenol.展开更多
Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QT...Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence.展开更多
The effect of multiple-step thermal ageing treatment (MSTAT) on the corrosion characteristics of A356.0-type Al-Si-Mg alloy in simulated seawater has been studied. The MSTAT treatment also consists of Double Thermal A...The effect of multiple-step thermal ageing treatment (MSTAT) on the corrosion characteristics of A356.0-type Al-Si-Mg alloy in simulated seawater has been studied. The MSTAT treatment also consists of Double Thermal Ageing (DTAT- T7), Single Thermal Ageing (STAT- T6), Step- Quenching and Ageing (SQA). The corrosion of the thermal treated samples was characterized by electrochemical Potentiodynamics polarization techniques consisting of linear polarization and chronopotentiometric method using the fit Tafel plot. Generally, from the linear polarization, the corrosion rate decreases at all temperatures with the ageing time. The corrosion behavior of the DTAT and SQA Al-Si-Mg alloy in the simulated seawater showed better resistance than the STAT Al-Si-Mg alloy. Samples in the SQA-STAT have improved corrosion resistance than the SQA-DTAT one. The chronopotentiometric corrosion study of some selected samples indicates a decrease in the corrosion resistance with open circuit potential exposure time. Consequently, the form of corrosion in the studied Al-Si-Mg alloy are slightly uniform and predominantly pitting corrosion as obtained from the SEM study. The pits diameter were found to range from 30-50μm.展开更多
This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions....This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.展开更多
Three individuals of Horqin yellow cattle equipped with permanent fistula, weighed (548 ±21) kg, were sdected as the experimental animals. The ru- men degradation characteristics of dry matter (DM) and crude ...Three individuals of Horqin yellow cattle equipped with permanent fistula, weighed (548 ±21) kg, were sdected as the experimental animals. The ru- men degradation characteristics of dry matter (DM) and crude protein (CP) of roughage at 6, 12, 24, 48 and 72 h were measured by nylon bag method. The re- suits showed that the effective degradation rates of DM and CP of alfalfa hay were the highest, while higher contents of rapid degradation part and potential degrada- tion part of DM and CP also resulted in higher degradation rates of DM and CP. The effective degradation rates of CP and DM of roughage presented strong positive correlation with CP, but showed strong negative correlation with neutral detergent fiber (NDF). The effective degradation rates of CP of five roughages successively were alfalfa hay 〉 alfalfa block 〉 ryegrass 〉 silage corn 〉 straw.展开更多
Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation pro...Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation process,the material’s surface and microstructure are being changed by stresses induced by machining.Hence degradable metal implants need to be fully characterized in terms of the influence of machining on the resulting microstructure and corrosion performance.In this study,micro-computed tomography(μCT)is used for the quantification of the degradation rate of biodegradable implants.To our best knowledge,for the first time quantitative measures are introduced to describe the degradation homogeneity in 3D.This information enables a prediction in terms of implant stability during the degradation in the body.Two magnesium gadolinium alloys,Mg-5Gd and Mg-10 Gd(all alloy compositions are given in weight%unless otherwise stated),in the shape of M2 headless screws have been investigated for their microstructure and their degradation performance up to 56 days.During the microstructure investigations particular attention was paid to the localized deformation of the alloys,due to the machining process.In vitro immersion testing was performed to assess the degradation performance quantified by subsequent weight loss and volume loss(usingμCT)measurements.Although differences were observed in the degree of screw’s near surface microstructure being influenced from machining,the degradation rates of both materials appeared to be suitable for application in orthopedic implants.From the degradation homogeneity point of view no obvious contrast was detected between both alloys.However,the higher degradation depth ratios between the crests and roots of Mg-5Gd ratios may indicated a less homogeneous degradation of the screws of these alloys on contract to the ones made of Mg-10Gd alloys.Due to its lower degradation rates,its more homogeneous microstructure,its weaker texture and better degradation performance extruded Mg-10Gd emerged more suitable as implant material than Mg-5Gd.展开更多
基金support from the Na-tional Key Research and Development Program of China(2021YFC2400703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)support from Natural Science Foundation of Henan Provincial(222300420309).
文摘The degradation behavior of biodegradable Mg alloys has become a research hotspot in the fields about biodegradable metallic materials.While the most of the related publications mainly focused on the degradation rate of Mg-based materials,but rare to care about the changes of their mechanical properties during the immersion period,which can significantly affect their service performance.The link between residual strength and Mg degradation is not appreciated enough.In this work,a series media were constructed based on Hanks’solution,the effects of inorganic ions on the degradation rate and mechanical integrity of Mg-Zn-Y-Nd alloy were investigated.The results indicated that the degradation behavior of Mg alloy was mainly controlled by degradation products and there is no direct correspondence between the degradation rate change and mechanical integrity of Mg alloy.The relevant findings are beneficial for selecting the monitoring index in Mg corrosion tests and evaluating the service reliability of Mg alloys for biomedical applications.
文摘Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.
基金the financial support from the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Commission of China(Grant Nos.U20A20234,51874062)+3 种基金the Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxm X0010)Fundamental Research Funds for the Central Universities(No.2022CDJKYJH004)the Science and Technology Major Project of Shanxi Province(No.20191102008)University Innovation Research Group of Chongqing(CXQT20023)。
文摘In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated.Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix.EX400 with higher volume fraction of non-DRXed grains exhibited higher strength,which was mainly due to strong texture,high dislocation density,and high volume fraction of lamellar LPSO.The EX420 with higher volume fraction of DRXed grains showed higher degradation rate,which was mainly due to the higher density of grain boundary.The EX400 exhibited excellent comprehensive properties with tensile yield strength(TYS)of 334 MPa,ultimate tensile strength(UTS)of 484 MPa and elongation(EL)of 7.4%,ultimate compressive strength(UCS)of 638 MPa and compressive yield strength(CYS)of 443 MPa,degradation rate of 86.1 mg/cm^(2)/h at 93℃in 3 wt.%KCl solution.
基金supported by grants from National&Local Joint Engineering Research Center of Orthopaedic Biomaterials(XMHT20190204007)Shenzhen Key Medical Discipline Construction Fund(No.SZXK023)+4 种基金Shenzhen“San-Ming”Project of Medicine(No.SZSM201612092)Shenzhen Research and Development Project(No.Z2021N054)Guangdong Basic and Applied Basic Research Foundations(No.2019A1515011290,2021A1515012586,2019A1515110983)China Postdoctoral Science Foundation(No.2020M672756)Bethune Charitable Foundation and CSPC Osteoporosis Research Project(No.G-X-2020–1107–21)。
文摘Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated high specific surface area,and the three-dimensional interconnected pores provided fast pervasive invasion entrance for the corrosive medium,rising concern of the structural integrity during the degradation.To clarify the structural evolution of the three-dimensional(3D)porous structure,semi-static immersion tests were carried out to evaluate the degradation performance in our previous study.Nevertheless,dynamic immersion tests mimicking the in vivo circulatory fluid through the interconnected porous structure have yet been investigated.Moreover,the effects of dynamic flow rates on the degradation deposition behavior of 3D porous Mg scaffolds were rarely reported.In this study,Mg scaffolds degraded at three flow rates exhibited different degradation rates and deposition process.A flow rate of 0.5 m L/min introduced maximum drop of porosity by accumulated deposition products.The deposition products provided limited protection against the degradation process at a flow rate of 1.0 m L/min.The three-dimensional interconnected porous structure of Mg scaffold degraded at 2.0 m L/min well retained after 14 days showing the best interconnectivity resistance to the degradation deposition process.The dynamic immersion tests disclosed the reason for the different degradation rates on account of flow rates,which may bring insight into understanding of varied in vivo degradation rates related to implantation sites.
文摘Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.
基金This work is financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0301100)the Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxmX0010)+1 种基金the Natural Science Foundation Commission of China(Grant No.51571044 and 51874062)Fundamental Research Funds for the Central Universities(Grant No.2018CDGFCL0005 and 2019CDXYCL0031).
文摘In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.
文摘The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were observed in the solution. The aims of the present study were to assess the degradation rates of FLT in other alkaline solutions and clarify the chemical structures of the four degradation products in order to obtain basic data for designing an enema for inflammatory bowel disease. The apparent degradation rate constants in 0.05 M NaOH and 0.1 M NaOH:CH_3CN=1:1 were 0.472 ± 0.013 h^(-1) and 0.154 ± 0.000 h^(-1)(n=3), respectively. The chemical structures of products 1–4 in 0.1 M NaOH:methanol=1:1 were revealed by nuclear magnetic resonance(NMR)and mass spectrometry data. The chemical structure of products 2 was that the 17-position of the thioester moiety of FLT was substituted by a carboxylic acid. The degradation product in 0.1 M NaOH:CH_3CN=1:1 was found to be product 2 based on ~1H NMR data. The degradation product in 0.05 M NaOH was considered to be product 2 based on the retention time of HPLC. These results are useful for detecting the degradation products of FLT by enzymes of the intestinal bacterial flora in the large intestine after dosing FLT as an enema.
文摘Land along the Bomboré River in the rural commune of Mogtédo in Burkina Faso is experiencing degradation. The explanatory causes of this degradation constitute the subject of this study. To do this, a survey was conducted among agricultural producers deployed along the watercourse. Soil profiles were described and samples were taken to analyze pH, soil organic carbon, soil organic matter, total nitrogen, and texture. The RUSLE model approach based on landstat8 OLI/TIRS and SRTM satellite images dated December 17, 2021 with fairly good radiometric, spatial, and spectral resolution was used to calculate the land loss rate. In terms of results, the potentially irrigable areas that spread out on both sides of the banks of the river cover 209.23 ha with a perimeter of 6.16 km. The number of irrigators is 26 producers and they grow 17.92 ha of vegetables. Soil analyzes indicate the presence of a moderate acid on the vertisol with a pH between 5.57 and 5.86. On the depth 0 - 30 cm of the horizon, the color of the horizons ranges from 5YR4/2 on the talweg and on the right bank to 7.5YR3/2 on the left bank and presents no risk of salinity because the electrical conductivity measured is less than 1dS/cm. The diagnosis of hydromechanical equipment shows that producers use 46 motor pumps for irrigation, of which 15 motor pumps run on gasoline and 31 motor pumps on butane gas with a ratio of 1.7 motor pumps per producer. The number of Polyvinyl Chloride (PVC) pipes used by producers in combination with a motor pump gives an average of 44 per farmer. In terms of mineral fertilization, the gross doses used by producers are 415.53 kg/ha of NPK and 201.55 kg/ha of urea, while the quantities of phytosanitary products are 3.99 l/ha of pesticides and 1.42 l/ha of herbicides. Agricultural activities emit about 222,436.66 kgCO<sub>2</sub>eq into the atmosphere, whose emissions from motor pumps represent 84.52% of these total emissions. The land loss estimate gives an average rate of 2.30 t/ha/year of land loss. This loss is due to the effects of poor agricultural practices, water erosion, and the drainage channels and gullies created by the anarchic installation of dwellings around the edges of the river. This study calls for more monitoring actions to sustainably safeguard the soil and water resources of this river which contribute to the survival of more than 73,214 inhabitants.
基金Supported by China Petroleum & Chemical Corporation (X599011).
文摘Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing with the widely used Haldane model,which is greatly dependent on the initial phenol concentration,our model can be used to simulate the phenol degradation process in a wide range of initial phenol concentration by using only one set of model parameters ,Therefore,this new kinetic model has much more potential applications to industrial design and operation.
文摘The current concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soils contaminated with Chinese technical product sodium pentachlorophenate ( Na- PCP). The estimated half-life of octachlorodioxin (OCDD) was about 14 years in contaminated soils based on the local historical record and mass balance calculation during the past 43 years( 1960-2003). The isomer profiles remained the same regardless of paddy field soil or riverbank soil. The results indicated that the congenerspecific information was efficient in estimating the PCDD/Fs fate in contaminated soils.
基金Funded by the China Scholarship Council and Wisconsin Institute for Discovery(WID)the Scientific Research Staring Foundation,Fujian University of Technology,China(No.GY-Z13028)+1 种基金the Programfor New Century Excellent Talents in Fujian Province University(NCETFJ-2010)the Research Fund for Fujian Provincial University(JK-2010038)
文摘The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding device, and then immersed into phosphate buffer saline (PBS) for in vitro degradation experiments. The mechanisms of degradation and the degradation rate were characterized by the change in molecular weight and reduction in specimen mass. In addition, the effects of processing temperature and the geometry of the formed PSADT tablets on the rate of degradation were studied. The surface morphology at different degradation times was observed by scanning electron microscopy (SEM). The experimental results showed that PSADT exhibited sur^hce erosion due to the fact that near zero-order degradation kinetics was observed during its degradation process. Moreover, it is found that the geometry of tablets played an important role on the rate of degradation, while the processing temperature had no significant effect on the PSADT degradation rate.
文摘Degradation rate of feed proteins in rumen is a basic indicator of new intestinal protein system of ruminants. In this paper, determination methods of degradation rate in tureen including in-vivo method, nylon bag method and artificial rumen method are compared in order to provide a reference for animal nutrition.
基金Supported by Agricultural Science and Technology Innovation Fund of Jiangsu Province(CX(12)5014)~~
文摘To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1 in aqueous acetonitrile;When the radiation dose was below 9 kGy, the degradation of FB1 in corn was not significant. The degradation rates of FB1 with concentrations of 0.8 mg/ml, 10.0 μg/ml, 1.0 μg/ml and 50 ng/ml after irradiation at 9 kGy were 22.5%, 51.0%, 59.0% and 64.8% respectively; when irradiation dose was increased to 100 kGy, the degrada-tion rate of FB1 with concentration of 0.8 mg/ml was up to 90%, and it was nearly 100% when irradiation dose was increased to 200 kGy. No representative products of FB1 were detected by LC/MS/MS analysis.
基金support from the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Commission of China(Grant Nos.U20A20234 and 51874062)+1 种基金the Fundamental Re-search Funds for Central Universities(No.2022CDJKYJH004C)the Science and Technology Major Project of Shanxi Province(No.20191102008).
文摘As-extruded Mg-Er-Ni alloys with different volume fractions of long-period stacking ordered(LPSO)phase and density of lamellar γ' phase were prepared,and the microstructure,mechanical,and degradation properties were investigated.Coupling the bulk LPSO phase and the lamellar γ' phase,and controlling the dynamic recrystallization processes during deformation by adjusting the volume fraction of LPSO and the density of the γ' phase,a synergistic increase in strength and degradation rate can be achieved.On the one hand,the increase in corrosion rate was related to the increased volume fraction of the bulk LPSO phase and the densities of the lamellar γ' phase,which provide more galvanic corrosion.Moreover,high densities of the lamellar γ' phase can provide more corrosion interface by inhibiting the recrystallization process to refine dynamic recrystallized(DRXed)grains during the hot extrusion.On the other hand,the ultimate tensile strength(UTS)and tensile yield strength(TYS)of the Mg-Er-Ni alloy increased from 345 and 265 MPa to 514 MPa and 358 MPa,respectively,which was mainly attributed to grain boundary and texture strengthening,bulk LPSO phase and lamellar γ' phase strengthening.Overall,Mg^(-1)4Er-4Ni alloy,which contains the highest volume fraction bulk LPSO phase and the densities of lamellar γ' phase,re-alized a synergistic enhancement of strength and degradation rate.The UTS,TYS,and degradation rate of Mg^(-1)4Er-4Ni were 514 MPa,358 MPa,and 142.5 mg cm^(-2)h^(-1)(3 wt%KCl solution at 93◦C),respectively.This research provides new insight into developing Mg alloys with high strength and degradation rates for fracturing tool materials in the application of oil and gas exploitation in harsh environments.
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z321)the National Natural Science Foundation of China(No.20843001)
文摘The new biofilm-electrode method was used for the phenol degradation, because of its low current requirement. The biofilm-electrode reactor consisted of immobilized degrading bacteria on Ti electrode as cathode and Ti/PbO2 electrode as anode. With the biofilmelectrode reactor in a divided electrolytic cell, the phenol degradation rate could achieve 100% at 18 h which was higher than using traditional methods, such as biological or electrochemical methods. Chemical oxygen demand (COD) removal rate of the biofilmelectrode reactor was also greater than that using biological and electrochemical method, and could reach 80% at 16 h. The results suggested that the biofilm-electrode reactor system can be used to treat wastewater with phenol.
基金supported by the China Key Research Project for Global Change (No.2010CB951404) the China National Science Foundation (No.40821001)
文摘Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence.
文摘The effect of multiple-step thermal ageing treatment (MSTAT) on the corrosion characteristics of A356.0-type Al-Si-Mg alloy in simulated seawater has been studied. The MSTAT treatment also consists of Double Thermal Ageing (DTAT- T7), Single Thermal Ageing (STAT- T6), Step- Quenching and Ageing (SQA). The corrosion of the thermal treated samples was characterized by electrochemical Potentiodynamics polarization techniques consisting of linear polarization and chronopotentiometric method using the fit Tafel plot. Generally, from the linear polarization, the corrosion rate decreases at all temperatures with the ageing time. The corrosion behavior of the DTAT and SQA Al-Si-Mg alloy in the simulated seawater showed better resistance than the STAT Al-Si-Mg alloy. Samples in the SQA-STAT have improved corrosion resistance than the SQA-DTAT one. The chronopotentiometric corrosion study of some selected samples indicates a decrease in the corrosion resistance with open circuit potential exposure time. Consequently, the form of corrosion in the studied Al-Si-Mg alloy are slightly uniform and predominantly pitting corrosion as obtained from the SEM study. The pits diameter were found to range from 30-50μm.
文摘This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.
基金Supported by Science and Technology Cooperation Project of Tongliao City and Inner Mongolia University for Nationalities(SXZD2012026)Scientific Research Starting Foundation for Doctors of Inner Mongolia University for Nationalities
文摘Three individuals of Horqin yellow cattle equipped with permanent fistula, weighed (548 ±21) kg, were sdected as the experimental animals. The ru- men degradation characteristics of dry matter (DM) and crude protein (CP) of roughage at 6, 12, 24, 48 and 72 h were measured by nylon bag method. The re- suits showed that the effective degradation rates of DM and CP of alfalfa hay were the highest, while higher contents of rapid degradation part and potential degrada- tion part of DM and CP also resulted in higher degradation rates of DM and CP. The effective degradation rates of CP and DM of roughage presented strong positive correlation with CP, but showed strong negative correlation with neutral detergent fiber (NDF). The effective degradation rates of CP of five roughages successively were alfalfa hay 〉 alfalfa block 〉 ryegrass 〉 silage corn 〉 straw.
基金carried out within the Synchro Load project(BMBF project number 05K16CGA)which is funded by the Röntgen-Angström Cluster(RAC),a bilateral research collaboration of the Swedish government and the German Federal Ministry of Education and Research(BMBF)the project Mg Bone(BMBF project number 05K16CGB)
文摘Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation process,the material’s surface and microstructure are being changed by stresses induced by machining.Hence degradable metal implants need to be fully characterized in terms of the influence of machining on the resulting microstructure and corrosion performance.In this study,micro-computed tomography(μCT)is used for the quantification of the degradation rate of biodegradable implants.To our best knowledge,for the first time quantitative measures are introduced to describe the degradation homogeneity in 3D.This information enables a prediction in terms of implant stability during the degradation in the body.Two magnesium gadolinium alloys,Mg-5Gd and Mg-10 Gd(all alloy compositions are given in weight%unless otherwise stated),in the shape of M2 headless screws have been investigated for their microstructure and their degradation performance up to 56 days.During the microstructure investigations particular attention was paid to the localized deformation of the alloys,due to the machining process.In vitro immersion testing was performed to assess the degradation performance quantified by subsequent weight loss and volume loss(usingμCT)measurements.Although differences were observed in the degree of screw’s near surface microstructure being influenced from machining,the degradation rates of both materials appeared to be suitable for application in orthopedic implants.From the degradation homogeneity point of view no obvious contrast was detected between both alloys.However,the higher degradation depth ratios between the crests and roots of Mg-5Gd ratios may indicated a less homogeneous degradation of the screws of these alloys on contract to the ones made of Mg-10Gd alloys.Due to its lower degradation rates,its more homogeneous microstructure,its weaker texture and better degradation performance extruded Mg-10Gd emerged more suitable as implant material than Mg-5Gd.