期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
A CO_(2) storage potential evaluation method for saline aquifers in a petroliferous basin 被引量:1
1
作者 LI Yang WANG Rui +2 位作者 ZHAO Qingmin XUE Zhaojie ZHOU Yinbang 《Petroleum Exploration and Development》 SCIE 2023年第2期484-491,共8页
According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, consideri... According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, considering geological,engineering and economic factors. The four scales include basin scale, depression scale, play scale and trap scale, and the three levels include theoretical storage capacity, engineering storage capacity, and economic storage capacity. The theoretical storage capacity can be divided into four trapping mechanisms, i.e. structural & stratigraphic trapping, residual trapping, solubility trapping and mineral trapping, depending upon the geological parameters, reservoir conditions and fluid properties in the basin. The engineering storage capacity is affected by the injectivity, storage security pressure, well number, and injection time.The economic storage capacity mainly considers the carbon pricing yield, drilling investment, and operation cost, based on the break-even principle. Application of the method for saline aquifer in the Gaoyou sag of the Subei Basin reveals that the structural & stratigraphic trapping occupies the largest proportion of the theoretical storage capacity, followed by the solubility trapping and the residual trapping, and the mineral trapping takes the lowest proportion. The engineering storage capacity and the economic storage capacity are significantly lower than the theoretical storage capacity when considering the constrains of injectivity, security and economy, respectively accounting for 21.0% and 17.6% of the latter. 展开更多
关键词 petroliferous basin saline aquifer CO_(2)storage potential CO_(2)storage mechanism theoretical storage capacity engineering storage capacity economic storage capacity
下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:28
2
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 petroliferous basin Deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
下载PDF
Effects of Deep Fluids on Hydrocarbon Generation and Accumulation in Chinese Petroliferous Basins 被引量:12
3
作者 ZHU Dongya LIU Quanyou +2 位作者 JIN Zhijun MENG Qingqiang HU Wenxuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期301-319,共19页
Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata thr... Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO2, CH4, H2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO2 reservoirs have been discovered. The CO2 content is up to 99%, with δ-(13)C(CO2) values ranging from-4.1‰ to-0.37‰ and -3He/-4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ-(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ-(13)C(CH4)δ-(13)C(C2H6)δ-(13)C(C3H8)δ-(13)C(C4H10). According to laboratory experiments, introducing external H2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic -(87)Sr. Due to CO2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at -6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO2. Many reservoirs containing both supercritical CO2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO2 are dominated by low molecular weight saturated hydrocarbons. 展开更多
关键词 petroliferous basin deep fluids organic-inorganic interaction HYDROGENATION reservoir rock alteration hydrocarbon migration
下载PDF
The Distribution of Petroleum Resources and Characteristics of Main Petroliferous Basins along the Silk Road Economic Belt and the 21st-Century Maritime Silk Road 被引量:3
4
作者 HAO Qingqing ZUO Yinhui +3 位作者 LI Lintao CHEN Weijun YI Junjie WU Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1457-1486,共30页
The Silk Road Economic Belt and the 21st-Century Maritime Silk Road Initiative, abbreviated as the Belt and Road Initiative, is a primary development strategy of China's future international cooperation. Especially, ... The Silk Road Economic Belt and the 21st-Century Maritime Silk Road Initiative, abbreviated as the Belt and Road Initiative, is a primary development strategy of China's future international cooperation. Especially, the energy resource cooperation, including oil and gas resources cooperation, is an important part of this initiative. The Belt and Road has undergone complicated geological evolution, and contains abundant mineral resources such as oil, gas, coal, uranium, iron, copper, gold and manganese ore resources. Among these, Africa holds 7.8% of the world's total proven oil reserves. The oil and gas resources in Africa are relatively concentrated, with an overall low exploration degree and small consumption demand. Nigeria and Libya contain the most abundant oil resources in Africa, accounting for 2.2% and 2.9% of the world's total reserves, respectively. Nigeria and Algeria hold the richest natural gas resources in Africa, occupying 2.8% and 2.4% of the world's total reserves, respectively. Africa's oil and gas resources are mainly concentrated in Egypt, Sultan and Western Sahara regions in the northern Africa, and the Gulf of Guinea, Niger River and Congo River area in the western Africa. The Russia--Central Asia area holds rich petroleum resources in Russia, Kazakhstan, Turkmenistan and Uzbekistan. The potential oil and gas areas include the West Siberia Basin, East Siberia Basin and sea continental shelf in Russia, the northern and central Caspian Basin in Kazakhstan, the right bank of the Amu-Darya Basin, the East Karakum uplift and the South Caspian Basin in Turkmenistan, and the Amu-Daria Basin, Fergana Basin, Afghan-Tajik Basin and North Ustyurt Basin in Uzbekistan. The Middle East oil and gas resources are mainly distributed in the Zagros foreland basin and Arabian continental margin basin, and the main oil-producing countries include Saudi Arabia, Iran and Iraq. The Asia Pacific region is a new oil and gas consumption center, with rapid growth of oil and gas demand. In 2012, this region consumed about 33.6% of the world's total oil consumption and 18.9% of the world's total natural gas consumption, which has been ranked the world's largest oil and gas consumption center. The oil and gas resources are concentrated in China, Indosinian, Malaysia, Australia and India. The abundant European proven crude oil reserves are in Norway, Britain and Denmark and also rich natural gas resources in Norway, Holland and Britain. Norway and Britain contain about 77.5% of European proven oil reserves, which accounts for only 0.9% of the world's proven reserves. The Europe includes main petroliferous basins of the Voring Basin, Anglo-Dutch Basin, Northwest German Basin, Northeast German-Polish Basin and Carpathian Basin. According to the analysis of source rocks, reservoir rocks, cap rocks and traps for the main petroliferous basins, the potential oil and gas prospecting targets in the Belt and Road are mainly the Zagros Basin and Arabic Platform in the Middle East, the East Barents Sea Basin and the East Siberia Basin in Russia-Central Asia, the Niger Delta Basin, East African rift system and the Australia Northwest Shelf. With the development of oil and gas theory and exploration technology, unconventional petroleum resources will play an increasingly important role in oil and gas industry. 展开更多
关键词 petroliferous basin pay zone AFRICA Middle East Central Asia RUSSIA Asia Pacific region
下载PDF
Emplacement of Dyke Swarms, Cretaceous Volcanism and Development of Petroliferous Basins in and around Peninsular India
5
作者 Kiran.S.MISRA Anshuman MISRA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期59-60,共2页
We illustrate intricate genetic relationship between prolonged extensional tectonics,formation of several sedimentary basins,enormous Cretaceous volcanism and emplacement of great dyke swarms as well assequential
关键词 Cretaceous Volcanism and Development of petroliferous basins in and around Peninsular India Emplacement of Dyke Swarms
下载PDF
Oilfield geothermal resources of the Upper Assam Petroliferous Basin,NE India
6
作者 Dilip Majumdar Abhilekha Devi 《Energy Geoscience》 2021年第4期246-253,共8页
Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewabl... Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewable energy sources like oil,gas,coal,and other fossil fuels,and has a bright prospect.The Upper Assam Basin is a mature petroliferous basin of NE India,where there are several hundred low production,high water cut,or abandoned oil and gas wells that can be retrofitted as geothermal wells instead of drilling new ones.This will help bridge the gap of growing energy demand and limited supply in energy-deficient state like Assam.Situated away from the active plate boundaries and in lack of active volcanism,the Upper Assam Basin remains a low-to-medium enthalpy geothermal fluid regime.The deeper reservoir in this regard can,therefore,be the best candidate for the introspection of the potential geothermal energy reservoir reconnaissance.The selection of a deeper horizon considered in the present case has been the stratified reservoirs of the Lakadong-Therria(Lk-Th)Formation,Sylhet Group of the Lower Eocene age occurring at a variable depth of 3400 me 4600 m.The Lk-Th Formation possesses a fair-quality reservoir with lateral continuity and favourable petrophysical properties.In this study,representative gamma-ray(GR)and resistivity(R)logs were examined to work out lithology,and bed boundary demarcation,etc.The total Formation thickness varies from 97 to 157 m;the individual sand body thickness is up to 6 m.Other reservoir parameters,e.g.,porosity(φ=8-33%),water saturation(S_(w)=4.57-95.15%),geothermal gradient(2.71℃/100m to 3.92 C/100 m at 4300 m and 3608 m)respectively,and theoretical estimate of high heat flux in the range 70e100 mW/m^(2)/s,are the necessary yard-stick to measure the subsurface geothermal reserves.Efficient energy extraction will have the potential in facilitating energy utilization for industrial purposes,especially in tea processing units present nearby oilfields and also for power generation by the binary mechanism. 展开更多
关键词 Upper Assam petroliferous basin Geothermal energy Water cut Abandoned oil/gas well Geothermal gradient
下载PDF
Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance 被引量:1
7
作者 Yingchang CAO Guanghui YUAN +6 位作者 Yanzhong WANG Nianmin ZAN Zihao JIN Keyu LIU Kelai XI Yihan WEI Peipei SUN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第9期1673-1703,共31页
Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoi... Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoirs. Based on a study of the diagenesis of clastic reservoirs in the Bohai Bay Basin, Tarim Basin, and Pearl River Mouth Basin and physical and numerical simulation experiments of fluid-rock interactions, this paper proposed a successive formation model of secondary pores via feldspar dissolution in deeply buried clastic reservoirs, considering the global research progresses in feldspar dissolution in clastic rocks. Feldspar dissolution can occur from shallow open systems to deep-ultra deep closed systems in petroliferous basins, resulting in the successive formation of secondary pores at different diagenetic stages. The successive mechanism includes three aspects. The first aspect is the succession of corrosive fluids that dissolve minerals. Meteoric freshwater dominates at the Earth’s surface and the early diagenetic A stage. Subsequently, organic acids and COformed via kerogen maturation dominate at the early diagenetic B stage to the middle diagenetic stage. COand organic acids formed via hydrocarbon oxidation in hydrocarbon reservoirs dominate at the middle diagenetic B stage to the late diagenetic stage. The second aspect is the successive formation processes of secondary pores via feldspar dissolution. Large-scale feldspar secondary pores identified in deep reservoirs include secondary pores formed at shallow-medium depths that are subsequently preserved into deep layers, as well as secondary pores formed at deep depths. Existing secondary pores in deeply buried reservoirs are the superposition of successively feldspar dissolution caused by different acids at different stages. The third aspect is a successive change in the feldspar alteration pathways and porosity enhancement/preservation effect. Open to semi-open diagenetic systems are developed from the Earth’s surface to the early diagenetic stage, and feldspar dissolution forms enhanced secondary pores. Nearly closed to closed diagenetic systems develop in the middle to late diagenetic stages, and feldspar dissolution forms redistributional secondary pores. The associated cementation causes compression resistance of the rock, which is favorable for the preservation of secondary pores in deep layers. These new insights extend the formation window of secondary pores in petroliferous basins from the traditional acid-oil generation window to a high-temperature gas generation window after hydrocarbon charging. The proposed model explains the genesis of deep-ultra deep high-quality reservoirs with low-permeability, medium-porosity and dominating feldspar secondary pores, which is significant for hydrocarbon exploration in deep to ultra-deep layers. 展开更多
关键词 petroliferous basin Deep to ultra-deep layers Clastic reservoirs Acid generation via thermal evolution Feldspar dissolution Successive formation of secondary pores
原文传递
Dynamic Field Division of Hydrocarbon Migration,Accumulation and Hydrocarbon Enrichment Rules in Sedimentary Basins 被引量:13
8
作者 PANG Xiongqi LIU Keyu +5 位作者 MA Zhongzhen JIANG Zhenxue XIANG Caifu HUO Zhipeng PANG Hong CHEN Junqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1559-1592,共34页
Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much... Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much lower in the deep parts of basins: at a depth of 7000 m, hydrocarbons can accumulate only in rocks with porosity less than 5%. However, in the shallow parts of basins (i.e., depths of around 1000 m), hydrocarbon can accumulate in rocks only when porosity is over 20%. Second, hydrocarbon reservoirs tend to exhibit negative pressures after hydrocarbon accumulation at depth, with a pressure coefficient less than 0.7. However, hydrocarbon reservoirs at shallow depths tend to exhibit high pressure after hydrocarbon accumulation. Third, deep reservoirs tend to exhibit characteristics of oil (-gas)-water inversion, indicating that the oil (gas) accumulated under the water. However, the oil (gas) tends to accumulate over water in shallow reservoirs. Fourth, continuous unconventional tight hydrocarbon reservoirs are distributed widely in deep reservoirs, where the buoyancy force is not the primary dynamic force and the caprock is not involved during the process of hydrocarbon accumulation. Conversely, the majority of hydrocarbons in shallow regions accumulate in traps with complex structures. The results of this study indicate that two dynamic boundary conditions are primarily responsible for the above phenomena: a lower limit to the buoyancy force and the lower limit of hydrocarbon accumulation overall, corresponding to about 10%-12% porosity and irreducible water saturation of 100%, respectively. These two dynamic boundary conditions were used to divide sedimentary basins into three different dynamic fields of hydrocarbon accumulation: the free fluid dynamic field, limit fluid dynamic field, and restrain fluid dynamic field. The free fluid dynamic field is located between the surface and the lower limit of the buoyancy force, such that hydrocarbons in this field migrate and accumulate under the influence of, for example, the buoyancy force, pressure, hydrodynamic force, and capillary force. The hydrocarbon reservoirs formed are characterized as "four high," indicating that they accumulate in high structures, are sealed in high locations, migrate into areas of high porosity, and are stored in reservoirs at high pressure. The basic features of distribution and accumulation in this case include hydrocarbon migration as a result of the buoyancy force and formation of a reservoir by a caprock. The limit fluid dynamic field is located between the lower limit of the buoyancy force and the lower limit of hydrocarbon accumulation overall; the hydrocarbon migrates and accumulates as a result of, for example, the molecular expansion force and the capillary force. The hydrocarbon reservoirs formed are characterized as "four low," indicating that hydrocarbons accumulate in low structures, migrate into areas of low porosity, and accumulate in reservoirs with low pressure, and that oil(-gas)-water inversion occurs at low locations. Continuous hydrocarbon accumulation over a large area is a basic feature of this field. The restrain fluid dynamic field is located under the bottom of hydrocarbon accumulation, such that the entire pore space is filled with water. Hydrocarbons migrate as a result of the molecular diffusion force only. This field lacks many of the basic conditions required for formation of hydrocarbon reservoirs: there is no effective porosity, movable fluid, or hydrocarbon accumulation, and potential for hydrocarbon exploration is low. Many conventional hydrocarbon resources have been discovered and exploited in the free fluid dynamic field of shallow reservoirs, where exploration potential was previously considered to be low. Continuous unconventional tight hydrocarbon resources have been discovered in the limit fluid dynamic field of deep reservoirs; the exploration potential of this setting is thought to be tremendous, indicating that future exploration should be focused primarily in this direction. 展开更多
关键词 petroliferous basins dynamic force of hydrocarbon accumulation dynamic fields ofhydrocarbon accumulation hydrocarbon accumulation mechanism hydrocarbon distribution rule
下载PDF
Hydrocarbon expulsion model and resource potential evaluation of high-maturity marine source rocks in deep basins:Example from the Ediacaran microbial dolomite in the Sichuan Basin,China 被引量:3
9
作者 Wen-Yang Wang Xiong-Qi Pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Chang-Rong Li Xin-Hua Ma 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2618-2630,共13页
Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the... Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide. 展开更多
关键词 Deep petroliferous basin Overmatured source rocks Hydrocarbon expulsion model Resource evaluation Sichuan basin
下载PDF
^(57)Fe M?ssbauer spectroscopy study of organic rich sediments(source rocks) from test well CT-1, Chinnewala structure of Jaisalmer basin,India
10
作者 R.P.Tripathi Beena Bhatia +4 位作者 R.Sharma K.R.Patel S.S.Meena Girish Ganwani S.C.Mathur 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第5期793-798,共6页
^57Fe Mossbauer spectroscopic study was carried out on the organic rich sedimentary samples collected at different depth intervals from newly drilled test well Chinnewala Tibba-1(CT-1) located in Jaisalmer Petrolife... ^57Fe Mossbauer spectroscopic study was carried out on the organic rich sedimentary samples collected at different depth intervals from newly drilled test well Chinnewala Tibba-1(CT-1) located in Jaisalmer Petroliferous basin India. It is found that iron is mainly distributed in high spin Fe^3+and Fe^2+ state in clay minerals. The plot of Fe^2+/(Fe^2++ Fe^3+) indicates the presence of poor redox conditions in the samples.Results obtained are also compared with those already reported in the literature. This comparison shows that there may exist a correlation between prospecting of the basin, the redox environment in sediments and the nature of iron bearing minerals distributed in the sedimentary sequence. 展开更多
关键词 Jaisalmer petroliferous basin Chinnewala Tibba structure ^57Fe Mossbauer spectroscopic study Source rocks Hydrocarbon prospecting
下载PDF
Analysis of the world deepwater oil and gas exploration situation
11
作者 WEN Zhixin WANG Jianjun +5 位作者 WANG Zhaoming HE Zhengjun SONG Chengpeng LIU Xiaobing ZHANG Ningning JI Tianyu 《Petroleum Exploration and Development》 SCIE 2023年第5期1060-1076,共17页
The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systema... The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systematically analyzed using commercial databases(e.g.S&P Global and Rystad)and public information of oil companies.The deepwater area is currently the most important domain for global oil and gas exploration and discovery,with the most discoveries and reserves in passive continental margin basins.The deepwater discoveries have the greatest contribution to the total newly discovered oil and gas reserves in the sea areas,with an increasing number of lithological reservoirs discovered,and oil and gas discoveries mainly distributed in the Mesozoic–Cenozoic.The seven major international oil companies are widely active in various aspects of deepwater oil and gas exploration and development,and play a leading role.Based on years of theoretical understanding of global oil and gas geology and resource evaluation,it is proposed that favorable deepwater exploration areas in the future will mainly focus on three major areas:the Atlantic coast,the Indian Ocean periphery,and the Arctic Ocean periphery.Six suggestions are put forward for expanding overseas deepwater oil and gas exploration business:first,expand the sources for obtaining multi-user seismic data and improve the scientific selection of deepwater exploration areas;second,increase efforts to obtain deepwater exploration projects in key areas;third,adopt various methods to access into/exit from resource licenses flexibly;fourth,acquire licenses with large equity and operate in“dual-exploration”model;fifth,strengthen cooperation with leading international oil companies in deepwater technology;and sixth,improve business operation capabilities and gradually transform from“non-operators”to“operators”. 展开更多
关键词 world petroliferous basins DEEPWATER oil and gas exploration situation international oil companies favorable exploration areas
下载PDF
A review of commercial development of continental shale oil in China
12
作者 Xiaolin Wang Guosheng Zhang +4 位作者 Wei Tang Donghui Wang Kun Wang Jiayi Liu Dong Du 《Energy Geoscience》 2022年第3期282-289,共8页
Continental shale oil is an important strategic supplement to the sustainable development of petroleum industry in China.Based on the thermal maturity of organic matter,most shale oil in China is mediumhigh or medium-... Continental shale oil is an important strategic supplement to the sustainable development of petroleum industry in China.Based on the thermal maturity of organic matter,most shale oil in China is mediumhigh or medium-low mature oil with relatively high density that is usually stored in thin layers and difficult to extract due to strong fluid flow resistance.Most petroliferous basins in China host shale oil but the abundance and distribution are not favorable for operators looking for a commercial exploitation.This study systematically investigates the recent progress of shale oil exploration and development in China.The result shows that the country is facing the following challenges while trying to explore its shale oil resources:complex geological conditions;a lack of established effective development mode;high development cost;and an absence of substantial breakthroughs in key technologies.Given these,the study suggests from research and policy-making perspectives to strengthen the research on basic theories and key technologies,establish demonstration zones for development of different types of shale oil,pursue breakthroughs in a stepwise approach,innovate the management mode to reduce the development cost,set shale oil as an independent mineral type,and give special policy incentives. 展开更多
关键词 Continental shale oil Commercial development petroliferous basin Technology breakthrough Mineral right
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部