The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group...The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.展开更多
We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of f...We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of functional equations to differential equations we find their solutions. Secondly, using approximate identities we prove the Hyers Ulam stability of the equations.展开更多
文摘The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.
基金the Korean Research Foundation Grant funded by the Korean Government(MOEHRD,Basic Research Promotion Fund)(KRF-2005-015-C00026)
文摘We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of functional equations to differential equations we find their solutions. Secondly, using approximate identities we prove the Hyers Ulam stability of the equations.