pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microsc...pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.展开更多
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o...The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.展开更多
[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cult...[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.展开更多
[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake...[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.展开更多
基金Funded by the National Key R&D Program of China(No.2023YFC2412300)the Natural Science Foundation of Hubei Province(No.2022CFB386)the National Natural Science Foundation of China(No.52073222)。
文摘pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2022XJHH02)the National Key Research and Development Program of China(No.2019YFC1907602).
文摘The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.
基金Supported by the Key Programfromthe National Natural Science Foundation of China(30230230)the National Natural Science Foundation Agricultural Program of China(30070429)Scientific Research Program for Universities in Inner Mongolia Autonomous Region(NJZY07120)~~
文摘[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.
基金Supported by"973"Project(2008CB418003)The National Natural Science Fund(30700414)
文摘[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.