In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release f...In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a malignant tumor with high morbidity and mortality,and easy to develop resistance to chemotherapeutic agents.Telomeres are DNA-protein complexes located at the te...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a malignant tumor with high morbidity and mortality,and easy to develop resistance to chemotherapeutic agents.Telomeres are DNA-protein complexes located at the termini of chro-mosomes in eukaryotic cells,which are unreplaceable in maintaining the stability and integrity of genome.Telomerase,an RNA-dependent DNA polymerase,play vital role in telomere length maintain,targeting telomerase is a promising therapeutic strategy for cancer.KYSE150 and KYSE410 cells were cultured and exposed to various concentrations of BIBR1532.Cell viability was assessed at 48 hours and 72 hours to determine the IC50 values.The effects of BIBR1532 on ESCC cell proliferation,migration,and cellular senescence were evaluated using the cell counting kit-8 assay,plate colony formation assay,scratch assay,transwell assay,andβ-galactosidase staining,respectively.Western blotting was performed to detect the expression of RESULTS The IC50 values for KYSE150 and KYSE410 cells after 48 hours of BIBR1532 exposure were 48.53μM and 39.59μM,respectively.These values decreased to 37.22μM and 22.71μM,respectively,following a longer exposure of 72 hours.BIBR1532 exhibited dose-dependent effects on KYSE150 and KYSE410 cells,including decreased hTERT expression,inhibition of proliferation and metastasis,and induction of cellular senescence.Mechanistically,BIBR1532 upregulated the expression of the DDR protein,γ-H2AX,and activated the ataxia telangiectasia and Rad3-related protein(ATR)/check point kinase 1(CHK-1)and ataxia-telangiectasia mutated gene(ATM)/CHK2 pathways.BIBR1532 downregulated the expression of telomere-binding proteins,including telomeric-repeat binding factor 1(TRF1),TRF2,protection of telomeres 1,and TIN2-interacting protein 1.In a nude mouse xenograft model,BIBR1532 significantly suppressed tumor growth,reduced hTERT expression,and increasedγ-H2AX protein levels.Hematoxylin and eosin staining of various organs,including the heart,liver,spleen,lungs,and kidneys,revealed no apparent adverse effects.CONCLUSION BIBR1532 exerts anti-cancer effects on ESCC by inducing DDR through the ATR/CHK1 and ATM/CHK2 pathways and downregulating the expression of telomere-binding proteins.展开更多
基金supported by the National Natural Science Foundation of China,No.81971269 (to DP)the Science and Technology Commission of Shanghai,No.YDZX20213100001003 (to DP)。
文摘In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
基金Supported by the Scientific Research Development Plan Project or the Scientific Research Foundation for Advanced Talents,Affiliated Hospital of North Sichuan Medical College,No.2023MPZK017,No.2023ZD001,No.2023-2ZD002,and No.2023GC009Science and Technology Support Program of Nanchong,No.22SXQT0001+1 种基金Youth Medical Innovation Research Project,or Medical Research Project of Sichuan Province,No.Q23047 and No.S23020Development of a Scientific Research Plan for the Doctoral Scientific Research Foundation of the North Sichuan Medical College,No.CBY22-ZDA03.
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a malignant tumor with high morbidity and mortality,and easy to develop resistance to chemotherapeutic agents.Telomeres are DNA-protein complexes located at the termini of chro-mosomes in eukaryotic cells,which are unreplaceable in maintaining the stability and integrity of genome.Telomerase,an RNA-dependent DNA polymerase,play vital role in telomere length maintain,targeting telomerase is a promising therapeutic strategy for cancer.KYSE150 and KYSE410 cells were cultured and exposed to various concentrations of BIBR1532.Cell viability was assessed at 48 hours and 72 hours to determine the IC50 values.The effects of BIBR1532 on ESCC cell proliferation,migration,and cellular senescence were evaluated using the cell counting kit-8 assay,plate colony formation assay,scratch assay,transwell assay,andβ-galactosidase staining,respectively.Western blotting was performed to detect the expression of RESULTS The IC50 values for KYSE150 and KYSE410 cells after 48 hours of BIBR1532 exposure were 48.53μM and 39.59μM,respectively.These values decreased to 37.22μM and 22.71μM,respectively,following a longer exposure of 72 hours.BIBR1532 exhibited dose-dependent effects on KYSE150 and KYSE410 cells,including decreased hTERT expression,inhibition of proliferation and metastasis,and induction of cellular senescence.Mechanistically,BIBR1532 upregulated the expression of the DDR protein,γ-H2AX,and activated the ataxia telangiectasia and Rad3-related protein(ATR)/check point kinase 1(CHK-1)and ataxia-telangiectasia mutated gene(ATM)/CHK2 pathways.BIBR1532 downregulated the expression of telomere-binding proteins,including telomeric-repeat binding factor 1(TRF1),TRF2,protection of telomeres 1,and TIN2-interacting protein 1.In a nude mouse xenograft model,BIBR1532 significantly suppressed tumor growth,reduced hTERT expression,and increasedγ-H2AX protein levels.Hematoxylin and eosin staining of various organs,including the heart,liver,spleen,lungs,and kidneys,revealed no apparent adverse effects.CONCLUSION BIBR1532 exerts anti-cancer effects on ESCC by inducing DDR through the ATR/CHK1 and ATM/CHK2 pathways and downregulating the expression of telomere-binding proteins.