The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately...The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately given by the independently designed current testing system. The relaxation oscillation across the PCM device could be measured using an oscilloscope. The oscillation duration decreases with time, showing an inner link with the shrinking threshold voltage Vth. However, the relaxation oscillation would not terminate until the remaining voltage Von reaches the holding voltage Vh. This demonstrates that the relaxation oscillation might be controlled by Von. The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it, which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.展开更多
The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap d...The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.展开更多
In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase chan...In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.展开更多
Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.M...Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.Macro mod-els and physics-based models have been proposed in different stages of the PCM technology developments.Compact model-ing of PCM is indeed more complex than the transistor modeling due to their multi-physics nature including electrical,thermal and phase transition dynamics as well as their interactions.Realizations of the PCM operations including threshold switching,set and reset programming in these models are diverse,which also differs from the perspective of circuit simulations.For the purpose of efficient and reliable designs of the PCM technology,open issues and challenges of the compact modeling are also discussed.展开更多
The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin f...The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.展开更多
After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data...After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).展开更多
As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the ...As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.展开更多
The endurance characteristics of phase change memory are studied. With operational cycles, the resis- tances of reset and set states gradually change to the opposite direction. What is more, the operational conditions...The endurance characteristics of phase change memory are studied. With operational cycles, the resis- tances of reset and set states gradually change to the opposite direction. What is more, the operational conditions that are needed are also discussed. The thilure and the changes are concerned with the compositional change of the phase change material. An abnormal phenomenon that the threshold voltage decreases slightly at first and then increases is observed, which is due to the coaction of interthce contact and growing active volume size changing.展开更多
The crystallization kinetics of Sn4oSe6o thin films has been successfully investigated using sheet resis- tance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass sub-...The crystallization kinetics of Sn4oSe6o thin films has been successfully investigated using sheet resis- tance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass sub- strates. The crystallization temperature for Sn4oSe60 thin film was found to be 156.6 -t- 0.3 ~C. In the as-deposited state, the sheet resistance was found to be 195 Mf2/[2, this value declined to 1560 f2/[2] upon annealing. The value of activation energy obtained from the Kissinger plot was 0.62 + 0.07 eV. From the results obtained, SnaoSe60 is a promising alloy for PCM application because of its high electrical contrast, high crystallization temperature, and relatively high activation energy.展开更多
Phase change memory (PCM) is a promising technology for future memory thanks to its better scalability and lower leakage power than DRAM (dynamic random-access memory). However, adopting PCM as main memory needs t...Phase change memory (PCM) is a promising technology for future memory thanks to its better scalability and lower leakage power than DRAM (dynamic random-access memory). However, adopting PCM as main memory needs to overcome its write issues, such as long write latency and high write power. In this paper, we propose two techniques to improve the performance and energy-efficiency of PCM memory systems. First, we propose a victim cache technique utilizing the existing buffer in the memory controller to reduce PCM memory accesses. The key idea is reorganizing the buffer into a victim cache structure (RBC) to provide additional hits for the LLC (last level cache). Second, we propose a chip parallelism-aware replacement policy (CPAR) for the victim cache to further improve performance. Instead of evicting one cache line once, CPAR evicts multiple cache lines that access different PCM chips. CPAR can reduce the frequent victim cache eviction and improve the write parallelism of PCM chips. The evaluation results show that, compared with the baseline, RBC can improve PCM memory system performance by up to 9.4% and 5.4% on average. Combing CPAR with RBC (RBC+CPAR) can improve performance by up to 19.0% and 12.1% on average. Moreover, RBC and RBC+CPAR can reduce memory energy consumption by 8.3% and 6.6% on average, respectively.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor ...This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application.展开更多
A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by d...A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.展开更多
Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures....Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.展开更多
Crystallization speed of phase change material is one of the main obstaclesfor the application of phase change memory(PCM)as storage classmemory in computing systems,which requires the combination ofnonvolatility with...Crystallization speed of phase change material is one of the main obstaclesfor the application of phase change memory(PCM)as storage classmemory in computing systems,which requires the combination ofnonvolatility with ultra-fast operation speed in nanoseconds.Here,wepropose a novel approach to speed up crystallization process of the onlycommercial phase change chalcogenide Ge_(2)Sb_(2)Te_(5)(GST).By employingTiO_(2)as the dielectric layer in phase change device,operation speed of650 ps has been achieved,which is the fastest among existing representativePCM,and is comparable to the programing speed of commercialdynamic random access memory(DRAM).Because of its octahedralatomic configuration,TiO_(2)can provide nucleation interfaces for GST,thus facilitating the crystal growth at the determinate interface area.Ti–O–Ti–O four-fold rings on the(110)plane of tetragonal TiO_(2)is critical forthe fast-atomic rearrangement in the amorphous matrix of GST thatenables ultra-fast operation speed.The significant improvement of operationspeed in PCM through incorporating standard dielectric materialTiO_(2)in DRAM paves the way for the application of phase change memoryin high performance cache-type data storage.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Mg-doped Sb3Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg- doped Sb3Te films and investigate their crystallization behaviors, structural, optical and electrical propert...Mg-doped Sb3Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg- doped Sb3Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb3Te. Especially Mg25.19(Sb3Te)74.81 shows higher Tc (~ 190℃) and larger Ea (~ 3.49 eV), which results in a better data retention maintaining for 10 yr at ~ 112 ℃. Moreover Ra/Rc value is also improved. These excellent properties make Mg-Sb-Te material a promising candidate for the phase-change memory (PCM).展开更多
Phase change memory (PCM) is a promising can- didate to replace DRAM as main memory, thanks to its bet- ter scalability and lower static power than DRAM. However, PCM also presents a few drawbacks, such as long writ...Phase change memory (PCM) is a promising can- didate to replace DRAM as main memory, thanks to its bet- ter scalability and lower static power than DRAM. However, PCM also presents a few drawbacks, such as long write la- tency and high write power. Moreover, the write commands parallelism of PCM is restricted by instantaneous power con- straints, which degrades write bandwidth and overall perfor- mance. The write power of PCM is asymmetric: writing a zero consumes more power than writing a one. In this paper, we propose a new scheduling policy, write power asymme- try scheduling (WPAS), that exploits the asymmetry of write power. WPAS improves write commands parallelism of PCM memory without violating power constraint. The evaluation results show that WPAS can improve performance by up to 35.5%, and 18.5% on average. The effective read latency can be reduced by up to 33.0%, and 17.1% on average.展开更多
Nonvolatile phase change random access memory(PCRAM)is regarded as one of promising candidates for next-generation memory in the era of Big Data.The phase transition mechanism of phase change materials is the key scie...Nonvolatile phase change random access memory(PCRAM)is regarded as one of promising candidates for next-generation memory in the era of Big Data.The phase transition mechanism of phase change materials is the key scientific issue to be addressed for phase change memory.Moreover,obtaining homogeneous phase change materials with high speed,low power consumption,long life and good thermal stability is still the ultimate challenge for high-density three-dimensional(3D)PCRAM.In this paper,starting from the octahedral structure motifs(octahedrons)which are considered as the"gene"of phase change materials,a new view on the phase transition mechanism is proposed.Based on this mechanism,a homogeneous phase change material is developed by constructing three matched octahedrons,which achieved an overall improvement in performance,showing 180℃ten-year data retention,6 ns SET speed,one order of magnitude longer life time and 75%reduced power consumption compared with traditional Ge_(2)Sb_(2)Te_(5)(GST)devices.It is of great significance to use it in 3D PCRAM chip and multi-level brain-inspired computing chip in the future.展开更多
Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the...Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge-Sb-Te systems and help in the design of novel phase change materials to boost the performances of the phase change memorv device.展开更多
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA09020402the National Key Basic Research Program of China under Grant Nos 2013CBA01900,2010CB934300,2011CBA00607 and 2011CB932804+2 种基金the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003the National Natural Science Foundation of China under Grant Nos 61176122,61106001,61261160500 and 61376006the Science and Technology Council of Shanghai under Grant Nos 12nm0503701,13DZ2295700,12QA1403900,13ZR1447200 and 14ZR1447500
文摘The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately given by the independently designed current testing system. The relaxation oscillation across the PCM device could be measured using an oscilloscope. The oscillation duration decreases with time, showing an inner link with the shrinking threshold voltage Vth. However, the relaxation oscillation would not terminate until the remaining voltage Von reaches the holding voltage Vh. This demonstrates that the relaxation oscillation might be controlled by Von. The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it, which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00604)
文摘The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB934300,2011CBA00607,and 2011CB9328004)the National Integrate Circuit Research Program of China(Grant No.2009ZX02023-003)+1 种基金the National Natural Science Foundation of China(Grant Nos.60906004,60906003,61006087,61076121,61176122,and 61106001)the Funds from the Science and Technology Council of Shanghai,China(Grant No.12nm0503701)
文摘In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.
基金supported in part by the National Natural Science Foundation of China(62074006,91964204)in part by the Major Scientific Instruments and Equipment Development(61927901)+4 种基金the Shenzhen Science and Technology Project(GXWD20201231165807007-20200827114656001)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200)Science and Technology Council of Shanghai(19JC1416801)the Shanghai Research and Innovation Functional Program(17DZ2260900)in part by the 111 Project(B18001)。
文摘Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.Macro mod-els and physics-based models have been proposed in different stages of the PCM technology developments.Compact model-ing of PCM is indeed more complex than the transistor modeling due to their multi-physics nature including electrical,thermal and phase transition dynamics as well as their interactions.Realizations of the PCM operations including threshold switching,set and reset programming in these models are diverse,which also differs from the perspective of circuit simulations.For the purpose of efficient and reliable designs of the PCM technology,open issues and challenges of the compact modeling are also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Chinese Academy of Sciencesthe Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No SJCX18_1024
文摘The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Changzhou Science and Technology Bureau under Grant No CJ20160028the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences
文摘After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2011CB302502, the National Natural Science Foundation of China under Grant No. 61379042, Huawei Research Program under Grant No. YB2013090048, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA06010401.
文摘As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09020402)the National Key Basic Research Program of China(Nos.2013CBA01900,2010CB934300,2011CBA00607,2011CB932804)+2 种基金the National Integrate Circuit Research Program of China(No.2009ZX02023-003)the National Natural Science Foundation of China(No.61176122,61106001,61261160500,61376006)the Science and Technology Council of Shanghai(Nos.12nm0503701,13DZ2295700,12QA1403900,13ZR1447200,14ZR1447500)
文摘The endurance characteristics of phase change memory are studied. With operational cycles, the resis- tances of reset and set states gradually change to the opposite direction. What is more, the operational conditions that are needed are also discussed. The thilure and the changes are concerned with the compositional change of the phase change material. An abnormal phenomenon that the threshold voltage decreases slightly at first and then increases is observed, which is due to the coaction of interthce contact and growing active volume size changing.
文摘The crystallization kinetics of Sn4oSe6o thin films has been successfully investigated using sheet resis- tance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass sub- strates. The crystallization temperature for Sn4oSe60 thin film was found to be 156.6 -t- 0.3 ~C. In the as-deposited state, the sheet resistance was found to be 195 Mf2/[2, this value declined to 1560 f2/[2] upon annealing. The value of activation energy obtained from the Kissinger plot was 0.62 + 0.07 eV. From the results obtained, SnaoSe60 is a promising alloy for PCM application because of its high electrical contrast, high crystallization temperature, and relatively high activation energy.
文摘Phase change memory (PCM) is a promising technology for future memory thanks to its better scalability and lower leakage power than DRAM (dynamic random-access memory). However, adopting PCM as main memory needs to overcome its write issues, such as long write latency and high write power. In this paper, we propose two techniques to improve the performance and energy-efficiency of PCM memory systems. First, we propose a victim cache technique utilizing the existing buffer in the memory controller to reduce PCM memory accesses. The key idea is reorganizing the buffer into a victim cache structure (RBC) to provide additional hits for the LLC (last level cache). Second, we propose a chip parallelism-aware replacement policy (CPAR) for the victim cache to further improve performance. Instead of evicting one cache line once, CPAR evicts multiple cache lines that access different PCM chips. CPAR can reduce the frequent victim cache eviction and improve the write parallelism of PCM chips. The evaluation results show that, compared with the baseline, RBC can improve PCM memory system performance by up to 9.4% and 5.4% on average. Combing CPAR with RBC (RBC+CPAR) can improve performance by up to 19.0% and 12.1% on average. Moreover, RBC and RBC+CPAR can reduce memory energy consumption by 8.3% and 6.6% on average, respectively.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
基金supported by the National Basic Research Program of China(No.2011CB922103)the National Natural Science Foundation of China(Nos.61376420,61404126,A040203)the Science and Technology Project of Shenzhen(No.JCYJ20140509172609175)
文摘This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA09020402the National Key Basic Research Program of China under Grant Nos 2013CBA01900,2010CB934300,2011CBA00607,and 2011CB932804+2 种基金the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003the National Natural Science Foundation of China under Grant Nos 61176122,61106001,61261160500,and 61376006the Science and Technology Council of Shanghai under Grant Nos 12nm0503701,13DZ2295700,12QA1403900,and 13ZR1447200
文摘A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178059 and 61137002)the Key Program of the Science and Technology Commission of Shanghai Municipality,China(Grant No.11jc1413300)
文摘Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.
基金the National Key Research andDevelopment Program of China,Grant/Award Number:2021YFA1202804the National Natural Science Foundationof China,Grant/Award Number:62174065the Hubei Provincial NaturalScience Foundation of China,Grant/Award Number:2021CFA038。
文摘Crystallization speed of phase change material is one of the main obstaclesfor the application of phase change memory(PCM)as storage classmemory in computing systems,which requires the combination ofnonvolatility with ultra-fast operation speed in nanoseconds.Here,wepropose a novel approach to speed up crystallization process of the onlycommercial phase change chalcogenide Ge_(2)Sb_(2)Te_(5)(GST).By employingTiO_(2)as the dielectric layer in phase change device,operation speed of650 ps has been achieved,which is the fastest among existing representativePCM,and is comparable to the programing speed of commercialdynamic random access memory(DRAM).Because of its octahedralatomic configuration,TiO_(2)can provide nucleation interfaces for GST,thus facilitating the crystal growth at the determinate interface area.Ti–O–Ti–O four-fold rings on the(110)plane of tetragonal TiO_(2)is critical forthe fast-atomic rearrangement in the amorphous matrix of GST thatenables ultra-fast operation speed.The significant improvement of operationspeed in PCM through incorporating standard dielectric materialTiO_(2)in DRAM paves the way for the application of phase change memoryin high performance cache-type data storage.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金Project supported by the National Key Basic Research Program,China(Grant No.2012CB722703)the National Natural Science Foundation of China(Grant Nos.61008041,61377061,and 61306147)+1 种基金the Program for Innovative Research Team of Ningbo City(Grant No.2009B21007)the K.C.Wong Magna Fund in Ningbo University,China
文摘Mg-doped Sb3Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg- doped Sb3Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb3Te. Especially Mg25.19(Sb3Te)74.81 shows higher Tc (~ 190℃) and larger Ea (~ 3.49 eV), which results in a better data retention maintaining for 10 yr at ~ 112 ℃. Moreover Ra/Rc value is also improved. These excellent properties make Mg-Sb-Te material a promising candidate for the phase-change memory (PCM).
文摘Phase change memory (PCM) is a promising can- didate to replace DRAM as main memory, thanks to its bet- ter scalability and lower static power than DRAM. However, PCM also presents a few drawbacks, such as long write la- tency and high write power. Moreover, the write commands parallelism of PCM is restricted by instantaneous power con- straints, which degrades write bandwidth and overall perfor- mance. The write power of PCM is asymmetric: writing a zero consumes more power than writing a one. In this paper, we propose a new scheduling policy, write power asymme- try scheduling (WPAS), that exploits the asymmetry of write power. WPAS improves write commands parallelism of PCM memory without violating power constraint. The evaluation results show that WPAS can improve performance by up to 35.5%, and 18.5% on average. The effective read latency can be reduced by up to 33.0%, and 17.1% on average.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0206101 and 2017YFB0701703)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB44010200)+2 种基金the National Natural Science Foundation of China(Nos.91964204,61874129,and 61874178)Science and Technology Council of Shanghai(Nos.20501120300 and 18DZ2272800)fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,and Genetic Engineering of Precious Metal Materials in Yunnan Province(I)-Construction and Application of Precious Metal Materials Professional Database(I)(No.202002AB080001-1).
文摘Nonvolatile phase change random access memory(PCRAM)is regarded as one of promising candidates for next-generation memory in the era of Big Data.The phase transition mechanism of phase change materials is the key scientific issue to be addressed for phase change memory.Moreover,obtaining homogeneous phase change materials with high speed,low power consumption,long life and good thermal stability is still the ultimate challenge for high-density three-dimensional(3D)PCRAM.In this paper,starting from the octahedral structure motifs(octahedrons)which are considered as the"gene"of phase change materials,a new view on the phase transition mechanism is proposed.Based on this mechanism,a homogeneous phase change material is developed by constructing three matched octahedrons,which achieved an overall improvement in performance,showing 180℃ten-year data retention,6 ns SET speed,one order of magnitude longer life time and 75%reduced power consumption compared with traditional Ge_(2)Sb_(2)Te_(5)(GST)devices.It is of great significance to use it in 3D PCRAM chip and multi-level brain-inspired computing chip in the future.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA09020402), National Integrate Circuit Research Program of China (No. 2009ZX02023-003), National Natural Science Foundation of China (Nos. 61076121, 61176122, 61106001, 61261160500, and 61376006), Science and Technology Council of Shanghai (Nos. 13ZR1447200 and 13DZ2295700). The supercomputer time was provided by the National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).
文摘Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge-Sb-Te systems and help in the design of novel phase change materials to boost the performances of the phase change memorv device.