期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Structural Evolution and Phase Change Properties of C-Doped Ge_2Sb_2Te_5 Films During Heating in Air 被引量:1
1
作者 郑龙 杨幸明 +4 位作者 胡益丰 翟良君 薛建忠 朱小芹 宋志棠 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期41-44,共4页
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2... We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties. 展开更多
关键词 GST Structural Evolution and phase change Properties of C-Doped Ge2Sb2Te5 Films During Heating in Air Sb
下载PDF
Fabrication and Properties of Microencapsulated n-octadecane and Paraffin
2
作者 王学晨 张兴祥 吴世臻 《Journal of Donghua University(English Edition)》 EI CAS 2008年第2期170-174,共5页
Microencapsulated n-alkanes as energy- storage materials have promising application prospects. The ndcrocapsules containing 100 - 50 wt% of n - octadecane, 0 -20 wt% of paraffin and 0 - 30 wt% of cyclohexane were synt... Microencapsulated n-alkanes as energy- storage materials have promising application prospects. The ndcrocapsules containing 100 - 50 wt% of n - octadecane, 0 -20 wt% of paraffin and 0 - 30 wt% of cyclohexane were synthesized by in-situ polymerization using melamine- formaldehyde polymer as shell. Cyclohexane was removed after heat-treated the microcapsules at 100℃. The morphologies, cell parameters, phase change properties, thermal stable temperatures of these microcapsules were examined. The diameters of these microcapsules are lower than 5 μm. The effect of paraffin in the microcapsules on the cell parameters of n-octadecane is negligible. The paraff'm is effectively used as a nucleating agent to decrease the degree of supercooling. The melting enthalpy is decreased from 132 J/g to 111 J/g due to the increase of the cyclohexane contents. The thermal stable temperature is enhanced 6 - 16℃ after heat-treated the microcapsules at 160℃ for 30 min. 展开更多
关键词 MICROENCAPSULATION phase change property thermal property CRYSTALLIZATION melting point
下载PDF
Preparation and characterization of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials 被引量:5
3
作者 Gao, Gui Bo Qian, Chun Xiang Gao, Min Jie 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第5期533-537,共5页
This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much mor... This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much more effectively than that of microcapsule with polyurea shell material(HPM).The results of microscopical imaging analysis system,DSC,TG,and laser particle analyzer were briefly introduced. 展开更多
关键词 HEXADECANE POLYUREA Melamine formaldehyde resin MICROCAPSULE phase change properties
下载PDF
Microencapsulation of stearic acid with polymethylmethacrylate using iron(Ⅲ) chloride as photo-initiator for thermal energy storage 被引量:4
4
作者 Ting Zhang Minmin Chen +1 位作者 Yu Zhang Yi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1524-1532,共9页
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti... Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite. 展开更多
关键词 Thermal energy storage phase change material Microencapsulation Thermodynamic properties Synthesis Photochemistry
下载PDF
Synthesis of N-Alkane Mixture Microcapsule and Its Application in Low-Temperature Protective Fabric
5
作者 陈旭 王瑞 +2 位作者 LI Tingting WU Bingyang LIU Xing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期525-531,共7页
We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. Th... We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body. 展开更多
关键词 low-temperature resistance phase change microcapsules thermal property melamine-urea-formaldehyde resin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部