We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast firs...We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11690022,11435006,11447601,and 11647601)the Strategic Priority Research Program of China Academy Sciences(Grant No.XDB23030100)+1 种基金the Peng Huanwu Innovation Research Center for Theoretical Physics(Grant No.11747601)the Key Research Program of Frontier Sciences of China Academy Sciences
文摘We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.