The main goal of the present research is to realize a sensitivity analysis of the developed complex micro scale austenite (γ) to ferrite (α) phase transformation model. The proposed solution is implemented in the de...The main goal of the present research is to realize a sensitivity analysis of the developed complex micro scale austenite (γ) to ferrite (α) phase transformation model. The proposed solution is implemented in the developed Cellular Automata Framework that facilitates implementation of various microstructure evolution models. Investigated model predicts phase transformation progress starting from the fully austenitic or two-phase regions. Theoretical background of the implemented austenite-ferrite phase transformation model is presented in the paper. The defined transition rules for initiation and subsequent growth as well as internal variables for each particular CA cell are also discussed. Examples of results obtained from the developed model, as well as model capabilities are shown. Finally sensitivity analysis using Morris OAT Design is also presented and discussed.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
There are few relevant researches on coils by tempering,and the variations of microstructure and properties of steel coil during the tempering process also remain unclear.By using thermo-mechanical control process(T...There are few relevant researches on coils by tempering,and the variations of microstructure and properties of steel coil during the tempering process also remain unclear.By using thermo-mechanical control process(TMCP)technology,Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line.Then,the samples are taken from the coils and tempered at the temperatures of 220℃,350℃,and 620℃respectively.After tempering the strength,ductility and toughness of samples are tested,and meanwhile microstructures are investigated.Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops.Then,the lath-shaped ferrites begin to gather,and the retained austenite films start to decompose.Finally,the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds.The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates,and the dislocation density decreases.The yield strength is highest when the steel is tempered at 220℃because of pinning of the precipitates to dislocations.The total elongation increases in all samples because of the development of ferrites during tempering.The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen.This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels,as well as its resulting performance variation rules.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been stu...The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been studied, and the variation of the ferrite volume fraction with temperature in α+ γ dual phase steel has been investigated. The relative expressions are derived from many experimental results, which provides a basis for quantitative calculation, composition design, determination of the working processes,and prediction of the mechanical properties and the structure of the austenitic steels.展开更多
his paper deals with the phase trans formation of austenite to ferrite within the critical temperature region(between Ac1 and Ac3).The results show that the volume fraction of trans formation of ferrite formed isother...his paper deals with the phase trans formation of austenite to ferrite within the critical temperature region(between Ac1 and Ac3).The results show that the volume fraction of trans formation of ferrite formed isothermally from austenite is mainly varied with the austenitizing temperature.The higher the austenitizing temperature,the more volume fraction of the ferrite formed isothermally from austenite.Besides,the phase trans formation of austenite to ferrite within the critical temperature region was checked by austenitizing isothermal time.The volume fraction of ferrite formed isothermally from austenite within the critical temperature region for different isothermal time has heen examined experimen tally.The lglg(l-fv)-1 vs lgt relation does not follow the Avrami equation strictly and consists of two straight lines.展开更多
采用原位EBSD分析方法,系统研究铁素体不锈钢淬火配分(quenching and partitioning,Q&P)工艺后残余奥氏体特征对其相变行为的影响。结果表明:变形过程中残余奥氏体的相变行为与其晶粒尺寸、分布和形貌有关,其影响程度按降序排列。...采用原位EBSD分析方法,系统研究铁素体不锈钢淬火配分(quenching and partitioning,Q&P)工艺后残余奥氏体特征对其相变行为的影响。结果表明:变形过程中残余奥氏体的相变行为与其晶粒尺寸、分布和形貌有关,其影响程度按降序排列。与马氏体间奥氏体和马氏体与铁素体间奥氏体相比,三叉晶界处的奥氏体和孪晶奥氏体在变形早期更容易发生马氏体相变,这与变形过程中不同分布残余奥氏体所受不同的应变或应力密切相关。与大尺寸奥氏体相比,小尺寸奥氏体在变形后期开始转变,有助于延长均匀伸长率。这可能是由于小尺寸奥氏体具有较高的界面能和平均C含量,并且由于细晶强化效应需要较大的宏观应力/应变来诱导马氏体相变。拉长/等轴残余奥氏体在变形早期容易转变,而薄膜状残余奥氏体的转变主要集中在变形后期,有助于进一步提高塑性。不同的转变行为是由于C和N含量的差异以及层错、位错和滑移等缺陷的存在。展开更多
文摘The main goal of the present research is to realize a sensitivity analysis of the developed complex micro scale austenite (γ) to ferrite (α) phase transformation model. The proposed solution is implemented in the developed Cellular Automata Framework that facilitates implementation of various microstructure evolution models. Investigated model predicts phase transformation progress starting from the fully austenitic or two-phase regions. Theoretical background of the implemented austenite-ferrite phase transformation model is presented in the paper. The defined transition rules for initiation and subsequent growth as well as internal variables for each particular CA cell are also discussed. Examples of results obtained from the developed model, as well as model capabilities are shown. Finally sensitivity analysis using Morris OAT Design is also presented and discussed.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.
基金Supported by National Natural Science Foundation of China(Grant No.51201154)
文摘There are few relevant researches on coils by tempering,and the variations of microstructure and properties of steel coil during the tempering process also remain unclear.By using thermo-mechanical control process(TMCP)technology,Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line.Then,the samples are taken from the coils and tempered at the temperatures of 220℃,350℃,and 620℃respectively.After tempering the strength,ductility and toughness of samples are tested,and meanwhile microstructures are investigated.Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops.Then,the lath-shaped ferrites begin to gather,and the retained austenite films start to decompose.Finally,the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds.The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates,and the dislocation density decreases.The yield strength is highest when the steel is tempered at 220℃because of pinning of the precipitates to dislocations.The total elongation increases in all samples because of the development of ferrites during tempering.The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen.This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels,as well as its resulting performance variation rules.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
文摘The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been studied, and the variation of the ferrite volume fraction with temperature in α+ γ dual phase steel has been investigated. The relative expressions are derived from many experimental results, which provides a basis for quantitative calculation, composition design, determination of the working processes,and prediction of the mechanical properties and the structure of the austenitic steels.
文摘his paper deals with the phase trans formation of austenite to ferrite within the critical temperature region(between Ac1 and Ac3).The results show that the volume fraction of trans formation of ferrite formed isothermally from austenite is mainly varied with the austenitizing temperature.The higher the austenitizing temperature,the more volume fraction of the ferrite formed isothermally from austenite.Besides,the phase trans formation of austenite to ferrite within the critical temperature region was checked by austenitizing isothermal time.The volume fraction of ferrite formed isothermally from austenite within the critical temperature region for different isothermal time has heen examined experimen tally.The lglg(l-fv)-1 vs lgt relation does not follow the Avrami equation strictly and consists of two straight lines.
文摘采用原位EBSD分析方法,系统研究铁素体不锈钢淬火配分(quenching and partitioning,Q&P)工艺后残余奥氏体特征对其相变行为的影响。结果表明:变形过程中残余奥氏体的相变行为与其晶粒尺寸、分布和形貌有关,其影响程度按降序排列。与马氏体间奥氏体和马氏体与铁素体间奥氏体相比,三叉晶界处的奥氏体和孪晶奥氏体在变形早期更容易发生马氏体相变,这与变形过程中不同分布残余奥氏体所受不同的应变或应力密切相关。与大尺寸奥氏体相比,小尺寸奥氏体在变形后期开始转变,有助于延长均匀伸长率。这可能是由于小尺寸奥氏体具有较高的界面能和平均C含量,并且由于细晶强化效应需要较大的宏观应力/应变来诱导马氏体相变。拉长/等轴残余奥氏体在变形早期容易转变,而薄膜状残余奥氏体的转变主要集中在变形后期,有助于进一步提高塑性。不同的转变行为是由于C和N含量的差异以及层错、位错和滑移等缺陷的存在。