We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic pha...We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic phase fluctuations under the evolution of environment. The environment is modeled by a bath of oscillators with infinite degrees of freedom and the register-bath coupling is chosen to be a general dissipation-decoherence form. It is found that the decoherence-free subspaces take on good stability in the case of small dissipation and small phase fluctuations.展开更多
A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable...A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable entanglement and intensity of the cavity radiation can increase with the deviation of the phase fluctuations of the laser employed in preparing the atoms, but decrease with the increasing rate at which the induced coherence superposition decays. Although it is found that varying the phase fluctuations and dephasing can lead to modification in the quantum features and statistical properties of the radiation, it does not alter the similarity in the nature of the degree of entanglement detectable by the criteria following from Duan-Giedke-Cirac Zoller and logarithmic negativity in a perceivable manner. Since the intensity and quantum features can be readily enhanced, this system is expected to be a viable source of a strong robust entangled (squeezed) light under various conditions. Moreover, comparison of the mean number of photon pairs with intensity difference shows that the chance of inciting a two-photon process can be enhanced by changing the rate of dephasing and phase fluctuations.展开更多
A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formu...A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formula from SD to Allan variance.Due to the fact that Allan variance does not always determine a unique SD function,power-law model of the SD of oscillator phase fluctuations is introduced to the translating algorithm and a constrained maximum likelihood solution is presented.Considering that the inversion is an ill-posed problem,a regularization method is brought forward in the process.Simulation results show that the converted SD of phase fluctuations from Allan variance parameters agrees well with the real SD function.Furthermore,the effects of the selected regularization factors and the input Allan variances are analyzed in detail.展开更多
Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertu...Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertures is deduced.Numerical examples of the beams passing through an aperture-spatial filter are enclosed,and the influences of amplitude modulations(AMs)and phase fluctuations(PFs)on the beam propagation quality of high-power laser beams passing through the multi-apertured ABCD optical system are considered and discussed.It is shown that PFs are able to degrade the beam propagation quality of laser beams more than AMs when the high-power laser beams passing through the aperture-spatial filter,furthermore,one or two aperture-lens optical systems configured appropriate aperture parameters are both able to upgrade the beam propagation quality of high-power laser beams.The M2 factor of Gaussian beam passing through the multi-aperture optical system is a special case in this paper.展开更多
The first-order-like phase transition (FOLT) in the dispersive optical bistability is investigated when the fluctuation in the incident light field is considered as colored noise. A unified colored-noise approximation...The first-order-like phase transition (FOLT) in the dispersive optical bistability is investigated when the fluctuation in the incident light field is considered as colored noise. A unified colored-noise approximation is applied to obtain the steady state distribution (SSD) when either the intensity or phase fluctuations of the incident field are included in the system. For intensity fluctuations only, the curve of SSD is changed from single extreme to two extremes, and then to three extremes. The colored nature of the noise can reduce the fluctuation in the system. However, for phase fluctuations only, the FOLT is mainly induced by the colored nature of the noise. The curve of SSD is changed from single extreme to three extremes directly. There is no FOLT existing for white noise.展开更多
Hopf bifurcation inducing lasing without inversion has been analyzed by taking into account the effect of phase fluctuation in the driving field based on a closed three level ladder-type atomic model. It is shown that...Hopf bifurcation inducing lasing without inversion has been analyzed by taking into account the effect of phase fluctuation in the driving field based on a closed three level ladder-type atomic model. It is shown that due to the phase fluctuation of the driving field, the necessary threshold increases significantly. Furthermore the area domain to get lasing without inversion decreases as the driving field's linewidth increases.展开更多
This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying)...This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle den- sity 1950 kg/m3. loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 p,m, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluc- tuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3-5 m/s) and very high velocities (i.e. 11-14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6-8 m/s).展开更多
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309310, National Natural Science Foundation of China under Grant Nos. 10347128, 10325523, and 90203018, the Natural Science Foundation of Hunan Province of China under Grant No. 04JJ3017, the China Postdoctoral Science Foundation under Grant No. 2005037695, and the Scientific Research Fund of Educational Bureau of Hunan Province of China under Grant No. 05B041
文摘We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic phase fluctuations under the evolution of environment. The environment is modeled by a bath of oscillators with infinite degrees of freedom and the register-bath coupling is chosen to be a general dissipation-decoherence form. It is found that the decoherence-free subspaces take on good stability in the case of small dissipation and small phase fluctuations.
文摘A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable entanglement and intensity of the cavity radiation can increase with the deviation of the phase fluctuations of the laser employed in preparing the atoms, but decrease with the increasing rate at which the induced coherence superposition decays. Although it is found that varying the phase fluctuations and dephasing can lead to modification in the quantum features and statistical properties of the radiation, it does not alter the similarity in the nature of the degree of entanglement detectable by the criteria following from Duan-Giedke-Cirac Zoller and logarithmic negativity in a perceivable manner. Since the intensity and quantum features can be readily enhanced, this system is expected to be a viable source of a strong robust entangled (squeezed) light under various conditions. Moreover, comparison of the mean number of photon pairs with intensity difference shows that the chance of inciting a two-photon process can be enhanced by changing the rate of dephasing and phase fluctuations.
文摘A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formula from SD to Allan variance.Due to the fact that Allan variance does not always determine a unique SD function,power-law model of the SD of oscillator phase fluctuations is introduced to the translating algorithm and a constrained maximum likelihood solution is presented.Considering that the inversion is an ill-posed problem,a regularization method is brought forward in the process.Simulation results show that the converted SD of phase fluctuations from Allan variance parameters agrees well with the real SD function.Furthermore,the effects of the selected regularization factors and the input Allan variances are analyzed in detail.
基金Science Fund from the Shaanxi Provincial Education Department,China(Grant No.18JK0723).
文摘Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertures is deduced.Numerical examples of the beams passing through an aperture-spatial filter are enclosed,and the influences of amplitude modulations(AMs)and phase fluctuations(PFs)on the beam propagation quality of high-power laser beams passing through the multi-apertured ABCD optical system are considered and discussed.It is shown that PFs are able to degrade the beam propagation quality of laser beams more than AMs when the high-power laser beams passing through the aperture-spatial filter,furthermore,one or two aperture-lens optical systems configured appropriate aperture parameters are both able to upgrade the beam propagation quality of high-power laser beams.The M2 factor of Gaussian beam passing through the multi-aperture optical system is a special case in this paper.
文摘The first-order-like phase transition (FOLT) in the dispersive optical bistability is investigated when the fluctuation in the incident light field is considered as colored noise. A unified colored-noise approximation is applied to obtain the steady state distribution (SSD) when either the intensity or phase fluctuations of the incident field are included in the system. For intensity fluctuations only, the curve of SSD is changed from single extreme to two extremes, and then to three extremes. The colored nature of the noise can reduce the fluctuation in the system. However, for phase fluctuations only, the FOLT is mainly induced by the colored nature of the noise. The curve of SSD is changed from single extreme to three extremes directly. There is no FOLT existing for white noise.
文摘Hopf bifurcation inducing lasing without inversion has been analyzed by taking into account the effect of phase fluctuation in the driving field based on a closed three level ladder-type atomic model. It is shown that due to the phase fluctuation of the driving field, the necessary threshold increases significantly. Furthermore the area domain to get lasing without inversion decreases as the driving field's linewidth increases.
文摘This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle den- sity 1950 kg/m3. loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 p,m, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluc- tuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3-5 m/s) and very high velocities (i.e. 11-14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6-8 m/s).