Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids hold...Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids holdups are more uniform than those in a conventionalfluidized bed.Axial and radial liquid dispersion coefficients in the gas-liquid-solid circulating fluidizedbed are investigated for the first time.It is found that axial and radial liquid dispersioncoefficients increases with increaes in gas velocity and solids holdup.The liquid velocity has littleinfluence on the axial liquid dispersion coefficient,but would adversely affect the redial liquiddispersion coefficient.It can be concluded that the gas-liquid-solid circulating fluidized bed hasadvantages such as better interphase contact and lower liquid dispersion along the axial directionover the expanded bed.展开更多
The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSC...The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A com...A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,展开更多
Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investi...Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.展开更多
A new type of liquid–solid fluidized bed,named circulating conventional fluidized bed(CCFB)which operates below particle terminal velocity was proposed and experimentally studied.The hydrodynamic behavior was systema...A new type of liquid–solid fluidized bed,named circulating conventional fluidized bed(CCFB)which operates below particle terminal velocity was proposed and experimentally studied.The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D.and 4.5 m in height with five different types of particles.Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity.The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates.The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions.The effect of particle properties and operating conditions on bed behavior was investigated as well.Results show that particles with higher terminal velocity have higher average solids holdup.展开更多
A hydrodynamic model of liquid-solid circulating fluidized bed is proposed to predict the slip velocity between fluid and solid particles and bed voidage by applying the theory of two-phase flow.The slip velocity can ...A hydrodynamic model of liquid-solid circulating fluidized bed is proposed to predict the slip velocity between fluid and solid particles and bed voidage by applying the theory of two-phase flow.The slip velocity can be represented by the following equation.u s =u-v=(1-ε)(ρ p -ρ f )g+F p -(1-ε)F f /εβ/εExperiments were carried out by using water and ceramic spheres,1.43 and 3.06 mm in mean diameter in a circulating fluidized bed of 31 mm diameter and 1700 mm height.The voidage was from 0.96 to 1,and the ratio between superficial liquid velocity and particle terminal velocity varied from 1.22 to 10.1 in the experiments.The fluid-particle interphase drag coefficient in the model was correlated from experimental data as followsd p βρ f =0.1881(1-ε) 1.0089 UU t -0.8043 d p D t -0.3228 The predicted values by the model proposed agreed with the experimental data well.In the meantime,the variation of slip velocity with superficial liquid velocity,bed voidage and particle diameter was discussed.The results showed that the model in the paper can well predict the hydrodynamics of liquid-solid two-phase flow in circuiating fluidized bed.The model is suitable for liquid-solid circulating fluidized bed under high flow rate and low concentration and can be also used on each tube in liquid-solid circulating fluidized bed heat exchanger.展开更多
应用基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)传感器的高速图像采集和处理技术,实验研究了低固含率条件下,低密度大孔吸附树脂固体颗粒气-液-固三相循环流化床的流体力学行为,分析了操作条件、液相物...应用基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)传感器的高速图像采集和处理技术,实验研究了低固含率条件下,低密度大孔吸附树脂固体颗粒气-液-固三相循环流化床的流体力学行为,分析了操作条件、液相物性、颗粒性质等对床内的固体颗粒循环速率、相含率、气泡运动等特性的影响,得到了具有合理物理解释的实验数据和结果。展开更多
The axial pressure drop profile and the radial solids distribution were measured in a circulating fluidized bed for evaluating the effects of return gas-solids stream position on the riser flow properties.The saturati...The axial pressure drop profile and the radial solids distribution were measured in a circulating fluidized bed for evaluating the effects of return gas-solids stream position on the riser flow properties.The saturation carrying capacity of gas for Geldart B typed particles and the flow mode of return gas-solids stream in the bed were discussed.It was found that arranging the inlet at a higher position of the riser would make the bottom bed leaner when U0 was high and Gs was low.When Gs increased,the longer influenced region of return particles and a small air-staging through lifting the loosening air injection position made the bottom bed become denser significantly.The deceleration and residence of return particles caused a relatively denser but asymmetrical region in the vicinity of inlet.But much more symmetrical solids distribution profile was found in the upper and lower regions far away from the inlet.The effects of inlet height on the flow properties of the riser with air-staging also were analyzed.The secondary air injection below the solids inlet could not cut off the solids exchange in the bed.The bed solids concentration increased when the particles inlet moved to a higher position of the bed when air-staging was adopted.Using CO2 as tracer,the dispersion of the loop-seal-fluidizing air for transmitting the return particles was investigated.It was found that the loop-seal fluidizing air dispersion rate was low but can be enhanced by the secondary air injection.展开更多
文摘Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids holdups are more uniform than those in a conventionalfluidized bed.Axial and radial liquid dispersion coefficients in the gas-liquid-solid circulating fluidizedbed are investigated for the first time.It is found that axial and radial liquid dispersioncoefficients increases with increaes in gas velocity and solids holdup.The liquid velocity has littleinfluence on the axial liquid dispersion coefficient,but would adversely affect the redial liquiddispersion coefficient.It can be concluded that the gas-liquid-solid circulating fluidized bed hasadvantages such as better interphase contact and lower liquid dispersion along the axial directionover the expanded bed.
文摘The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金supported by the Discovery Grant and Engage Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,
基金support provided by King Abdulaziz City for Science and Technology(KACST)through the Science&Technology Unit at King Fahd University of Petroleum&Minerals(KFUPM)for funding of this work,project No.NSTIP#13-WAT96-04,as part of the National Science,Technology and Innovation Plan.
文摘Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.
文摘A new type of liquid–solid fluidized bed,named circulating conventional fluidized bed(CCFB)which operates below particle terminal velocity was proposed and experimentally studied.The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D.and 4.5 m in height with five different types of particles.Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity.The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates.The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions.The effect of particle properties and operating conditions on bed behavior was investigated as well.Results show that particles with higher terminal velocity have higher average solids holdup.
文摘A hydrodynamic model of liquid-solid circulating fluidized bed is proposed to predict the slip velocity between fluid and solid particles and bed voidage by applying the theory of two-phase flow.The slip velocity can be represented by the following equation.u s =u-v=(1-ε)(ρ p -ρ f )g+F p -(1-ε)F f /εβ/εExperiments were carried out by using water and ceramic spheres,1.43 and 3.06 mm in mean diameter in a circulating fluidized bed of 31 mm diameter and 1700 mm height.The voidage was from 0.96 to 1,and the ratio between superficial liquid velocity and particle terminal velocity varied from 1.22 to 10.1 in the experiments.The fluid-particle interphase drag coefficient in the model was correlated from experimental data as followsd p βρ f =0.1881(1-ε) 1.0089 UU t -0.8043 d p D t -0.3228 The predicted values by the model proposed agreed with the experimental data well.In the meantime,the variation of slip velocity with superficial liquid velocity,bed voidage and particle diameter was discussed.The results showed that the model in the paper can well predict the hydrodynamics of liquid-solid two-phase flow in circuiating fluidized bed.The model is suitable for liquid-solid circulating fluidized bed under high flow rate and low concentration and can be also used on each tube in liquid-solid circulating fluidized bed heat exchanger.
文摘应用基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)传感器的高速图像采集和处理技术,实验研究了低固含率条件下,低密度大孔吸附树脂固体颗粒气-液-固三相循环流化床的流体力学行为,分析了操作条件、液相物性、颗粒性质等对床内的固体颗粒循环速率、相含率、气泡运动等特性的影响,得到了具有合理物理解释的实验数据和结果。
文摘The axial pressure drop profile and the radial solids distribution were measured in a circulating fluidized bed for evaluating the effects of return gas-solids stream position on the riser flow properties.The saturation carrying capacity of gas for Geldart B typed particles and the flow mode of return gas-solids stream in the bed were discussed.It was found that arranging the inlet at a higher position of the riser would make the bottom bed leaner when U0 was high and Gs was low.When Gs increased,the longer influenced region of return particles and a small air-staging through lifting the loosening air injection position made the bottom bed become denser significantly.The deceleration and residence of return particles caused a relatively denser but asymmetrical region in the vicinity of inlet.But much more symmetrical solids distribution profile was found in the upper and lower regions far away from the inlet.The effects of inlet height on the flow properties of the riser with air-staging also were analyzed.The secondary air injection below the solids inlet could not cut off the solids exchange in the bed.The bed solids concentration increased when the particles inlet moved to a higher position of the bed when air-staging was adopted.Using CO2 as tracer,the dispersion of the loop-seal-fluidizing air for transmitting the return particles was investigated.It was found that the loop-seal fluidizing air dispersion rate was low but can be enhanced by the secondary air injection.