The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa...The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed展开更多
Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at dif...Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.展开更多
The phase transition kinetics of thennotropic liquid crystalline aromatic-aliphatic regular copolyester: were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation...The phase transition kinetics of thennotropic liquid crystalline aromatic-aliphatic regular copolyester: were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.展开更多
The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and th...The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and the kinetic equations of positive and adverse martensitic transformation have been established with the variations of temperature and time.展开更多
The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austeni...The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.展开更多
The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the ...The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction d...The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting ...An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.展开更多
Solid-state phase transformation plays an important role in adjusting the microstructure and thus tuning the properties of materials. A general modular, analytical model has been widely applied to describe the kinetic...Solid-state phase transformation plays an important role in adjusting the microstructure and thus tuning the properties of materials. A general modular, analytical model has been widely applied to describe the kinetics of solid-state phase transformation involving nucleation, growth and impingement; the basic conception for iso-kinetics which constitutes a physical foundation for the kinetic models or recipes can be extended by the analytical model. Applying the model, the evolution of kinetic parameters is an effective tool for describing the crystallization of enormous amorphous alloys. In order to further improve the effectiveness of this kinetic model, recently, the recipes and the model fitting procedures were extended, with more factors (e.g., anisotropic growth, soft impingement, and thermodynamic driving force) taken into consideration in the modified models. The recent development in the field of analytical model suggests that it is a general, flexible and open kinetic model for describing the solid-state phase transformation kinetics.展开更多
This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of mult...This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of multiple scales is used to find the two-dimensional concentration distribution,which is important for modem day application in industry,environmental risk assessment,etc.Study deduces an analytic expression of two-dimensional concentration distribution for an open channel flow with sorptive channel bed.Effects of retention parameter,Darnkohler number on the solute dispersion are also discussed in this paper.Results reveal that slow or strong kinetics(small value of Darnkohler number)increases solute dispersion.It is also observed.that for slow phase exchange kinetics between bulk flow and small retentive channel bed,solute concentration distribution will uniform faster than their inert counterpart.展开更多
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exh...A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.展开更多
In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing...In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing was conducted on a Gleeble-1500 thermo-mechanical simulator.The mean grain size Dg of each annealed specimen was measured by the quantitative metallography technique.The grain growth kinetics of the Mg-6Zn alloy annealed at 473-623 K was obtained as Dg^4- Dg0^4=2.25 ×10^11 exp(-95450)by the least square linear regression method.The deviation of grain growth exponent n = 4 from the theoretical value of 2 may be attributed to the presence of solute zinc and second phases which will retard the boundary migration.Microscopic observations show that the non-uniform distribution of grain size for samples pre-extruded or annealed at low temperatures is closely related to the non-uniform distribution of fine and dispersed second phases but not to the non-uniform distribution of solute zinc.This indicates that second phase pinning effect plays an important role in microstructure refinement.展开更多
Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we fo...Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we found that theβ-transus temperature decreased by∼50℃ during studying theα→βtransformation in Ti-6Al-4V alloy via electropulsing treatment(EPT).The calculation suggests that the acceleration of transformation kinetics cannot be fully explained by Joule heat and athermal effects of the electromigration effect and electron wind theory.The microstructural evolution during EPT was systematically investigated utilizing scanning electron microscope(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),transmission Kikuchi diffraction(TKD),and transmission electron micro-scope(TEM).Microscopic analysis shows that the nano-sizedωand O'phases formed in theβphase,which causes large numbers of lattice distortion regions.The defects are conducive to accelerating the bulk diffusion of alloying elements inβ.Moreover,the nanodomains limited the growth of martensite,therefore nanocrystalline martensite formed after quenching.These findings develop the understanding of the destructive effect of current on metallic crystal,which will help to guide microstructural regulation in titanium and other alloys.展开更多
The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of appare...The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of apparent activation energy(Ea)were evaluated by Málek and Starink methods.The results show that under air atmosphere,the oxidation process of ilmenite concentrate is composed of three stages,and the chemical reaction(G(α)=1-(1-α)~2,whereαis the conversion degree)plays an important role in the whole oxidation process.At the first stage(α=0.05-0.30),the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree.At the second stage(α=0.30-0.50),the oxidation process is completely controlled by the secondary chemical reaction(G(α)=1-(1-α)~2).At the third stage(α=0.50-0.95),the secondary chemical reaction weakens gradually with increasing conversion degree,and the oxidation process is controlled gradually by a variety of functions;the kinetic equations are G(α)=(1-α)^(-1)(β=10K·min^(-1),whereβis heating rate),G(α)=(1-α)^(-1/2)(β=15-20K·min^(-1)),and G(α)=(1-α)^(-2)(β=25K·min^(-1)),respectively.For the whole oxidation process,the activation energies follow a parabolic law with increasing conversion degree,and the average activation energy is 160.56kJ·mol^(-1).展开更多
The non-isothermal kinetics of mullite formation from both non-mixed and mixed with different rare earth oxides(Pr6O11 and Er2O3) kaolinite were studied by comprehensive thermal analysis technologies and X-ray diffr...The non-isothermal kinetics of mullite formation from both non-mixed and mixed with different rare earth oxides(Pr6O11 and Er2O3) kaolinite were studied by comprehensive thermal analysis technologies and X-ray diffraction(XRD). Meanwhile, Kissinger equation, Ozawa equation and JMA modified equation(I) and(II) were employed for analysis of the effects of Pr6O11 and Er2O3 on the kinetics of kaolinite in phase transformation at high temperatures. The results showed that the addition of two kinds of rare earth oxides influenced the crystallization kinetic parameters of kaolinite. Crystallization activation energies and frequency factors of the kaolinite mixed with Pr6O11 were obviously decreased compared with the kaolinite with none, but the kaolinite mixed with Er2O3 weakly decreased. Crystallization behaviors were not changed, belonging to volume crystallization. Mullite formation from kaolinite was suppressed while generation of cristobalite was promoted by Pr6O11, and effect of Er2O3 on mullite formation from kaolinite under high temperature was not evident.展开更多
Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The ...Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The grain boundary precipitates will grow and coarsening below the solvus temperature.In this study,the in-situ intergranular corrosion performance regeneration of the sensitized Al–Mg alloy can be realized by low-density electro-pulsing treatment below the solvus temperature ofβ-phase.Our findings show that the dissolution of grain boundary precipitates by electro-pulsing treatment is accelerated at relatively low temperature in comparison to traditional heat treatment.The athermal effect produced by the interaction between atoms and electrons on the dissolution of grain boundary precipitates is the main reason for the improved corrosion resistance below the solvus temperature ofβ-phase.展开更多
A new process involving ultra-fast cooling(UFC)and on-line tempering(OLT)was proposed to displace austempering process,which usually implements in a salt/lead bath and brings out serious pollution in the industria...A new process involving ultra-fast cooling(UFC)and on-line tempering(OLT)was proposed to displace austempering process,which usually implements in a salt/lead bath and brings out serious pollution in the industrial application.The optimization of the new process,involving the evolution of the microstructure of medium-carbon steel during various cooling paths,was studied.The results show that the cooling path affected the final microstructure in terms of the fraction of pearlite,grain size and distribution of cementite in pearlite.Increasing the cooling rate or decreasing the OLT temperature contributes to restraining the transformation from austenite to ferrite,and simultaneously retains more austenite for the transformation of pearlite.It is also noted that bainite was observed in the microstructure at the cooling rate of 45℃/s and the OLT temperature of 500℃.Through either increasing the cooling rate or decreasing the OLT temperature,the distribution of cementite in pearlite is more dispersed and grain is refined.Taking the possibility of industrial applications into account,the optimal process of cooling at 45℃/s followed by OLT at 600℃ after hot rolling was determined,which achieves a microstructure containing nearly full pearlite with an average grain size of approximately 7μm and a homogeneously dispersed distribution of cementite in pearlite.展开更多
To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,t...To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,time,and carbon ratio( molar ratio of fixed carbon in coal to oxygen in iron oxides of VTM) on reduction degree were investigated.Results show that reduction degree increases with increasing volatile matter in coal,temperature,time,and carbon ratio.Phase transformation,microstructure,and reduction path were analyzed by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fact Sage 6. 0. The thermoravimetry-differential scanning calorimetry-quadrupole mass spectrometer method was used for kinetic analysis of the main reduction process. Results indicate that the kinetic mechanism follows the principle of random nucleation and growth( n = 4),and the activation energy values at 600-900 and 900-1 350 ℃ are 88. 7 and 295. 5 kJ / mol,respectively.展开更多
文摘The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed
基金financially supported by the National Natural Science Foundation of China(Nos.51604065 and 51674084)the Fundamental Funds for the Central Universities(Nos.150203003 and 150202001)+2 种基金the Natural Science Foundation of Liaoning Province(20170540316)the China Postdoctoral Science Foundation(2017M611246)the NEU Postdoctoral Science Foundation(No.20160304)
文摘Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.
文摘The phase transition kinetics of thennotropic liquid crystalline aromatic-aliphatic regular copolyester: were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.
文摘The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and the kinetic equations of positive and adverse martensitic transformation have been established with the variations of temperature and time.
文摘The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.
文摘The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.
基金financially supported by the National Natural Science Foundation of China (No. 51090384)the National High-Tech Research and Development Program of China (No. 2012AA062302)the Fundamental Research Funds for the Central Universities of China (Nos. N110202001 and N130602003)
文摘The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金financially supported by the National Natural Science Foundation of China(Nos.51204054 and 51574084)the Fundamental Research Funds for the Central Universities of China(No.N150204009)the National Basic Research Priorities Program of China(No.2014CB643405)
文摘An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.
基金financial support of the National Basic Research Program of China (No. 2011CB610403)the National Natural Science Foundation of China (Nos. 51134011 and 51431008)+1 种基金the Fundamental Research Fund of Northwestern Polytechnical University (No. JC20120223)the China National Funds for Distinguished Young Scientists (No. 51125002)
文摘Solid-state phase transformation plays an important role in adjusting the microstructure and thus tuning the properties of materials. A general modular, analytical model has been widely applied to describe the kinetics of solid-state phase transformation involving nucleation, growth and impingement; the basic conception for iso-kinetics which constitutes a physical foundation for the kinetic models or recipes can be extended by the analytical model. Applying the model, the evolution of kinetic parameters is an effective tool for describing the crystallization of enormous amorphous alloys. In order to further improve the effectiveness of this kinetic model, recently, the recipes and the model fitting procedures were extended, with more factors (e.g., anisotropic growth, soft impingement, and thermodynamic driving force) taken into consideration in the modified models. The recent development in the field of analytical model suggests that it is a general, flexible and open kinetic model for describing the solid-state phase transformation kinetics.
文摘This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of multiple scales is used to find the two-dimensional concentration distribution,which is important for modem day application in industry,environmental risk assessment,etc.Study deduces an analytic expression of two-dimensional concentration distribution for an open channel flow with sorptive channel bed.Effects of retention parameter,Darnkohler number on the solute dispersion are also discussed in this paper.Results reveal that slow or strong kinetics(small value of Darnkohler number)increases solute dispersion.It is also observed.that for slow phase exchange kinetics between bulk flow and small retentive channel bed,solute concentration distribution will uniform faster than their inert counterpart.
基金financially supported by the National Natural Science Foundation of China (No. 51402016)the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-008A2)
文摘A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.
基金the financial support from the National Natural Science Foundation of China(Grant No.51105328)the Natural Science Foundation of Jiangsu Province of China(No.BK20130447)the Colleges and Universities in Jiangsu Province Natural Science Foundation of China(Grant No.13KJB430026)
文摘In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing was conducted on a Gleeble-1500 thermo-mechanical simulator.The mean grain size Dg of each annealed specimen was measured by the quantitative metallography technique.The grain growth kinetics of the Mg-6Zn alloy annealed at 473-623 K was obtained as Dg^4- Dg0^4=2.25 ×10^11 exp(-95450)by the least square linear regression method.The deviation of grain growth exponent n = 4 from the theoretical value of 2 may be attributed to the presence of solute zinc and second phases which will retard the boundary migration.Microscopic observations show that the non-uniform distribution of grain size for samples pre-extruded or annealed at low temperatures is closely related to the non-uniform distribution of fine and dispersed second phases but not to the non-uniform distribution of solute zinc.This indicates that second phase pinning effect plays an important role in microstructure refinement.
基金Financial support from the National Key Research and Development Program of China(Nos.2020YFB008300,2020YFB008303,and 2020YFB008304)Provincial Natural Science Foundation of Shandong(No.ZR202102220408)+1 种基金National Natural Science Foundation of China(No.51701080)Talent Development Excellent Young Talents Fund Project China(No.20190103053JH).
文摘Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we found that theβ-transus temperature decreased by∼50℃ during studying theα→βtransformation in Ti-6Al-4V alloy via electropulsing treatment(EPT).The calculation suggests that the acceleration of transformation kinetics cannot be fully explained by Joule heat and athermal effects of the electromigration effect and electron wind theory.The microstructural evolution during EPT was systematically investigated utilizing scanning electron microscope(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),transmission Kikuchi diffraction(TKD),and transmission electron micro-scope(TEM).Microscopic analysis shows that the nano-sizedωand O'phases formed in theβphase,which causes large numbers of lattice distortion regions.The defects are conducive to accelerating the bulk diffusion of alloying elements inβ.Moreover,the nanodomains limited the growth of martensite,therefore nanocrystalline martensite formed after quenching.These findings develop the understanding of the destructive effect of current on metallic crystal,which will help to guide microstructural regulation in titanium and other alloys.
基金supported by the National Natural Science Foundation of China(Grant No.51234010)Special Fund for Basic Scientific Research in Colleges and Universities of the Central Business (No.0903005203413)
文摘The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of apparent activation energy(Ea)were evaluated by Málek and Starink methods.The results show that under air atmosphere,the oxidation process of ilmenite concentrate is composed of three stages,and the chemical reaction(G(α)=1-(1-α)~2,whereαis the conversion degree)plays an important role in the whole oxidation process.At the first stage(α=0.05-0.30),the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree.At the second stage(α=0.30-0.50),the oxidation process is completely controlled by the secondary chemical reaction(G(α)=1-(1-α)~2).At the third stage(α=0.50-0.95),the secondary chemical reaction weakens gradually with increasing conversion degree,and the oxidation process is controlled gradually by a variety of functions;the kinetic equations are G(α)=(1-α)^(-1)(β=10K·min^(-1),whereβis heating rate),G(α)=(1-α)^(-1/2)(β=15-20K·min^(-1)),and G(α)=(1-α)^(-2)(β=25K·min^(-1)),respectively.For the whole oxidation process,the activation energies follow a parabolic law with increasing conversion degree,and the average activation energy is 160.56kJ·mol^(-1).
基金supported by the National Natural Science Foundation of China(NSFC)(51264009)the Natural Science Foundation of Jiangxi Province of China(20122BAB206023)
文摘The non-isothermal kinetics of mullite formation from both non-mixed and mixed with different rare earth oxides(Pr6O11 and Er2O3) kaolinite were studied by comprehensive thermal analysis technologies and X-ray diffraction(XRD). Meanwhile, Kissinger equation, Ozawa equation and JMA modified equation(I) and(II) were employed for analysis of the effects of Pr6O11 and Er2O3 on the kinetics of kaolinite in phase transformation at high temperatures. The results showed that the addition of two kinds of rare earth oxides influenced the crystallization kinetic parameters of kaolinite. Crystallization activation energies and frequency factors of the kaolinite mixed with Pr6O11 were obviously decreased compared with the kaolinite with none, but the kaolinite mixed with Er2O3 weakly decreased. Crystallization behaviors were not changed, belonging to volume crystallization. Mullite formation from kaolinite was suppressed while generation of cristobalite was promoted by Pr6O11, and effect of Er2O3 on mullite formation from kaolinite under high temperature was not evident.
基金financially supported by the National Natural Science Foundation of China(Nos.51601011,51571013 and 51971019)the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China。
文摘Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The grain boundary precipitates will grow and coarsening below the solvus temperature.In this study,the in-situ intergranular corrosion performance regeneration of the sensitized Al–Mg alloy can be realized by low-density electro-pulsing treatment below the solvus temperature ofβ-phase.Our findings show that the dissolution of grain boundary precipitates by electro-pulsing treatment is accelerated at relatively low temperature in comparison to traditional heat treatment.The athermal effect produced by the interaction between atoms and electrons on the dissolution of grain boundary precipitates is the main reason for the improved corrosion resistance below the solvus temperature ofβ-phase.
基金sponsored by Key Projects in the National Science&Technology Pillar Program of China(2013BAE07B00)State Natural Science Fund Projects of China(51474142,51671124)+1 种基金Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2012)China Postdoctoral Science Foundation(2015M580316)
文摘A new process involving ultra-fast cooling(UFC)and on-line tempering(OLT)was proposed to displace austempering process,which usually implements in a salt/lead bath and brings out serious pollution in the industrial application.The optimization of the new process,involving the evolution of the microstructure of medium-carbon steel during various cooling paths,was studied.The results show that the cooling path affected the final microstructure in terms of the fraction of pearlite,grain size and distribution of cementite in pearlite.Increasing the cooling rate or decreasing the OLT temperature contributes to restraining the transformation from austenite to ferrite,and simultaneously retains more austenite for the transformation of pearlite.It is also noted that bainite was observed in the microstructure at the cooling rate of 45℃/s and the OLT temperature of 500℃.Through either increasing the cooling rate or decreasing the OLT temperature,the distribution of cementite in pearlite is more dispersed and grain is refined.Taking the possibility of industrial applications into account,the optimal process of cooling at 45℃/s followed by OLT at 600℃ after hot rolling was determined,which achieves a microstructure containing nearly full pearlite with an average grain size of approximately 7μm and a homogeneously dispersed distribution of cementite in pearlite.
基金Item Sponsored by National High-tech Research and Development Project of China(2012AA062302)Major Program of National Natural Science Foundation of China(51090384)Fundamental Research Funds for the Central Universities of China(N130602003)
文摘To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,time,and carbon ratio( molar ratio of fixed carbon in coal to oxygen in iron oxides of VTM) on reduction degree were investigated.Results show that reduction degree increases with increasing volatile matter in coal,temperature,time,and carbon ratio.Phase transformation,microstructure,and reduction path were analyzed by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fact Sage 6. 0. The thermoravimetry-differential scanning calorimetry-quadrupole mass spectrometer method was used for kinetic analysis of the main reduction process. Results indicate that the kinetic mechanism follows the principle of random nucleation and growth( n = 4),and the activation energy values at 600-900 and 900-1 350 ℃ are 88. 7 and 295. 5 kJ / mol,respectively.