This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by a...This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by additional phase,a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics,are generated.Then,these signals map the different information as well as their phases are also modulated to increase the communication bit rate,thus yielding a series of dual-use signals.Finally,the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification,confirming the effectiveness of the designed signals compared with the existing design strategy.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(61771109,U19B2017,61871080,61701088)the China Postdoctoral Science Foundation(2020M68147)。
文摘This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by additional phase,a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics,are generated.Then,these signals map the different information as well as their phases are also modulated to increase the communication bit rate,thus yielding a series of dual-use signals.Finally,the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification,confirming the effectiveness of the designed signals compared with the existing design strategy.