This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geolo...This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geological Survey’s storage work.Data analyses based on quality indicators obtained using TEQC have been carried out.The guidelines and data quality information from the IGS stations have been considered as the quality references,with the stations ALJI,EPCU,and TIOU standing out as the worst stations,while on the contrary,FUEN,PALM,PILA,and TRIA meet the quality requirements to become an IGS station.The relationship between the GPS data quality and their GAMIT-and Gipsy X-derived postfit ionosphere-free phase residuals has also been investigated,and the results reveal an inversely proportional relationship.It has been found that the stations showing an increase in elevation of the horizon line,also show an increase in cycle slips and multipath,are among the poorest quality stations,and among those with the highest postfit RMS of phase residuals.Moreover,the evolution of the vegetation around the antenna should be considered as it could cause a progressive loss of quality,which is not complying with the IGS standards.The quality assessment shows that the Topo-Iberia stations are appropriate for geodetic purposes,but permanent monitoring would be necessary to avoid the least possible loss of data and quality.In addition,a method to characterize the GNSS data quality is proposed.展开更多
In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual appro...In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.展开更多
Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi‐2212)superconducting round wires exhibited great potential for use in high‐field applications.The purity of the precursor powders is critical for the transport current of the wires.Ho...Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi‐2212)superconducting round wires exhibited great potential for use in high‐field applications.The purity of the precursor powders is critical for the transport current of the wires.However,the role of the residual secondary phase in the precursor powders is not fully understood.Here,the origin of the secondary phase was investigated in precursor powders that were prepared using ultrasonic spray pyrolysis(USP)and calcination processing.The microstructure and phase evolution of the precursor powders during the crystallization process were analyzed.Moreover,the effects that the residual secondary phase has on melting behavior,morphology properties,and the supercurrent flow of Bi‐2212 multi‐filamentary wires are systematically discussed.The residual secondary phase in the filament caused further crystallization,and this led to the formation of more and larger Bi‐2201 grains at the onset of the melting process.The poor microstructure and low critical current of the final Bi‐2212 wires can be attributed to the presence of the residual copper‐rich phase.Bi‐2212 wires that were prepared with fully crystallized powders had a high critical current density(J_(c))of 6773 A/mm^(2) at 4.2 K,self‐field.It was revealed that control of the secondary phases in precursor powders is greatly significant for achieving superior values of J_(c).展开更多
With the rapid development in the field of artificial intelligence and natural language processing(NLP),research on music retrieval has gained importance.Music messages express emotional signals.The emotional classifi...With the rapid development in the field of artificial intelligence and natural language processing(NLP),research on music retrieval has gained importance.Music messages express emotional signals.The emotional classification of music can help in conveniently organizing and retrieving music.It is also the premise of using music for psychological intervention and physiological adjustment.A new chord-to-vector method was proposed,which converted the chord information of music into a chord vector of music and combined the weight of the Mel-frequency cepstral coefficient(MFCC) and residual phase(RP) with the feature fusion of a cochleogram.The music emotion recognition and classification training was carried out using the fusion of a convolution neural network and bidirectional long short-term memory(BiLSTM).In addition,based on the self-collected dataset,a comparison of the proposed model with other model structures was performed.The results show that the proposed method achieved a higher recognition accuracy compared with other models.展开更多
The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray...The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.展开更多
The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS)...The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), differential scanning calorimetry(DSC), X-ray diffraction(XRD) and tensile test. The results show that the main phases are S(Al2CuMg), T(Al2Mg3Zn3) and Mg Zn2, with a small amount of Al7Cu2 Fe and Al3 Zr in the as-cast 7X50 alloy. The volume fraction of the dendritic-network structure and residual phase decreases gradually during the homogenization. After homogenization at 470 °C for 24 h and then 482 °C for 12 h, the T(Al2Mg3Zn3) phase disappears and minimal S(Al2CuMg) phase remains, while almost no change has happened for Al7Cu2 Fe. There is a strong endothermic peak at 477.8 °C in the DSC curve of as-cast alloy. A new endothermic peak appears at 487.5 °C for the sample homogenized at 470 °C for 1 h. However, this endothermic peak disappears after being homogenized at 482 °C for 24 h. The T(Al2Mg3Zn3) phase cannot be observed by XRD, which is consistent with that T phase is the associated one of S(Al2CuMg) phase and Mg Zn2 phase. The volume fraction of recrystallized grains is substantially less in the plate with pre-homogenization treatment. The strength and fracture toughness of the plate with pre-homogenization treatment are about 15 MPa and 3.3 MPa·m1/2 higher than those of the material with conventional homogenization treatment.展开更多
The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H...The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H16 temper by pulse laser welding. It was found that no cracking existed in the welding pool as Si content was below 0.34%. However, when the Si content increased to 0.47%, cracking formed in the welding pool. Microstructure observations indicated that residual eutectic phases distributed at the grain boundaries were discontinuous and appeared to be small particles in lower Si content alloys; the residual eutectic phases distributed at the grain boundaries were partially continuous and appeared to be films in higher Si content alloys. These phenomena could explain why Si content adversely affected the laser welding performance.展开更多
The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch ...The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.展开更多
This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at ...This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.展开更多
The phase evolution,microstructure and magnetic properties of Nd9-xYxFe72Ti2Zr2B15(x=0,0.5,1,2) nanocomposite ribbons were investigated.It was found that substitution of Y enhanced glass forming ability of the over-qu...The phase evolution,microstructure and magnetic properties of Nd9-xYxFe72Ti2Zr2B15(x=0,0.5,1,2) nanocomposite ribbons were investigated.It was found that substitution of Y enhanced glass forming ability of the over-quenched ribbons and stabilized the amorphous phase during post annealing treatment.Appropriate content of Y substitution effectively refined the microstructure and enhanced the remanence of the annealed samples.The residual amorphous intergranular phase in the annealed sample improved the square...展开更多
基金supported in part by the University of Jaén and the Spanish Ministry of Economy, Industry and Competitiveness (PTA2015-11507-I MINECO)。
文摘This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geological Survey’s storage work.Data analyses based on quality indicators obtained using TEQC have been carried out.The guidelines and data quality information from the IGS stations have been considered as the quality references,with the stations ALJI,EPCU,and TIOU standing out as the worst stations,while on the contrary,FUEN,PALM,PILA,and TRIA meet the quality requirements to become an IGS station.The relationship between the GPS data quality and their GAMIT-and Gipsy X-derived postfit ionosphere-free phase residuals has also been investigated,and the results reveal an inversely proportional relationship.It has been found that the stations showing an increase in elevation of the horizon line,also show an increase in cycle slips and multipath,are among the poorest quality stations,and among those with the highest postfit RMS of phase residuals.Moreover,the evolution of the vegetation around the antenna should be considered as it could cause a progressive loss of quality,which is not complying with the IGS standards.The quality assessment shows that the Topo-Iberia stations are appropriate for geodetic purposes,but permanent monitoring would be necessary to avoid the least possible loss of data and quality.In addition,a method to characterize the GNSS data quality is proposed.
基金National Natural Science Foundation of China(61002033,60902089)Open Research Fund of State Key Laboratory of Astronautic Dynamics of China (2011ADL-DW0103)
文摘In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.
基金supported by the National Key R&D Program of China(2021YFB3800201)the National Science Fund Program of China(No.51777172,51902267)the Natural Science Basic Research Plan in Shaanxi Province(No.2022GY‐392,2021JQ‐884).
文摘Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi‐2212)superconducting round wires exhibited great potential for use in high‐field applications.The purity of the precursor powders is critical for the transport current of the wires.However,the role of the residual secondary phase in the precursor powders is not fully understood.Here,the origin of the secondary phase was investigated in precursor powders that were prepared using ultrasonic spray pyrolysis(USP)and calcination processing.The microstructure and phase evolution of the precursor powders during the crystallization process were analyzed.Moreover,the effects that the residual secondary phase has on melting behavior,morphology properties,and the supercurrent flow of Bi‐2212 multi‐filamentary wires are systematically discussed.The residual secondary phase in the filament caused further crystallization,and this led to the formation of more and larger Bi‐2201 grains at the onset of the melting process.The poor microstructure and low critical current of the final Bi‐2212 wires can be attributed to the presence of the residual copper‐rich phase.Bi‐2212 wires that were prepared with fully crystallized powders had a high critical current density(J_(c))of 6773 A/mm^(2) at 4.2 K,self‐field.It was revealed that control of the secondary phases in precursor powders is greatly significant for achieving superior values of J_(c).
基金National Natural Science Foundation of China (No.61801106)。
文摘With the rapid development in the field of artificial intelligence and natural language processing(NLP),research on music retrieval has gained importance.Music messages express emotional signals.The emotional classification of music can help in conveniently organizing and retrieving music.It is also the premise of using music for psychological intervention and physiological adjustment.A new chord-to-vector method was proposed,which converted the chord information of music into a chord vector of music and combined the weight of the Mel-frequency cepstral coefficient(MFCC) and residual phase(RP) with the feature fusion of a cochleogram.The music emotion recognition and classification training was carried out using the fusion of a convolution neural network and bidirectional long short-term memory(BiLSTM).In addition,based on the self-collected dataset,a comparison of the proposed model with other model structures was performed.The results show that the proposed method achieved a higher recognition accuracy compared with other models.
基金Project (2012CB619503) supported by the National Basic Research Program of China
文摘The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.
基金Project(2011KJZX1-2)supported by the Science and Technology Development Fund of Aluminum Corporation of China
文摘The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), differential scanning calorimetry(DSC), X-ray diffraction(XRD) and tensile test. The results show that the main phases are S(Al2CuMg), T(Al2Mg3Zn3) and Mg Zn2, with a small amount of Al7Cu2 Fe and Al3 Zr in the as-cast 7X50 alloy. The volume fraction of the dendritic-network structure and residual phase decreases gradually during the homogenization. After homogenization at 470 °C for 24 h and then 482 °C for 12 h, the T(Al2Mg3Zn3) phase disappears and minimal S(Al2CuMg) phase remains, while almost no change has happened for Al7Cu2 Fe. There is a strong endothermic peak at 477.8 °C in the DSC curve of as-cast alloy. A new endothermic peak appears at 487.5 °C for the sample homogenized at 470 °C for 1 h. However, this endothermic peak disappears after being homogenized at 482 °C for 24 h. The T(Al2Mg3Zn3) phase cannot be observed by XRD, which is consistent with that T phase is the associated one of S(Al2CuMg) phase and Mg Zn2 phase. The volume fraction of recrystallized grains is substantially less in the plate with pre-homogenization treatment. The strength and fracture toughness of the plate with pre-homogenization treatment are about 15 MPa and 3.3 MPa·m1/2 higher than those of the material with conventional homogenization treatment.
基金Project(2011KJZD04)supported by the CHINALCO Science and Development Foundation,China
文摘The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H16 temper by pulse laser welding. It was found that no cracking existed in the welding pool as Si content was below 0.34%. However, when the Si content increased to 0.47%, cracking formed in the welding pool. Microstructure observations indicated that residual eutectic phases distributed at the grain boundaries were discontinuous and appeared to be small particles in lower Si content alloys; the residual eutectic phases distributed at the grain boundaries were partially continuous and appeared to be films in higher Si content alloys. These phenomena could explain why Si content adversely affected the laser welding performance.
文摘The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.
基金supported by National Natural Science Foundation of China(Grant No.40930637)Special Project for Earthquake Science(Grant No.200808079)Subject Foundation of Ministry of Education for Doctor Candidates in Universities(Grant No.20100022110001)
文摘This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.
文摘The phase evolution,microstructure and magnetic properties of Nd9-xYxFe72Ti2Zr2B15(x=0,0.5,1,2) nanocomposite ribbons were investigated.It was found that substitution of Y enhanced glass forming ability of the over-quenched ribbons and stabilized the amorphous phase during post annealing treatment.Appropriate content of Y substitution effectively refined the microstructure and enhanced the remanence of the annealed samples.The residual amorphous intergranular phase in the annealed sample improved the square...