Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is fe...Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.展开更多
The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel...The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel strategy to enhance the stability of CL-20 by employing a thermo-sensitive polymer,poly(N-isopropylacrylamide)(PNIPAM), to modulate its phase transitions. Our approach involves the use of an in-situ polymerized polydopamine(PDA) shell as a platform for surface grafting through atom transfer radical polymerization, yielding a core-shell structured CL-20@PDA-PNIPAM. Through comprehensive characterization, the successful grafting of PNIPAM is confirmed, significantly enhanced the phase stability of CL-20. Notably, our core-shell structure exhibits a 13℃ increase in phase transition temperature compared to raw CL-20, thereby delaying the ε→a phase transition by over 80 min under combined thermal and solvent conditions. The enhanced stability is attributed to the hydrophobic nature of PNIPAM above its low critical solution temperature in water, which effectively shields the CL-20 crystal. These findings provide new insights into enhancing the stability and safety of energetic materials in complex environments, highlighting the potential of our molecular switch mechanism.展开更多
CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the ...CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the CPB with CEV added was prepared,and the specific heat capacity,thermal conductivity,and uniaxial compressive strength(UCS)of CPB with different cement-tailing ratios and CEV addition ratios were tested,the influence of the above variables on the thermal and mechanical properties of CPB was analyzed.The results show that the maximum encapsulation capacity of expanded vermiculite for CaCl_(2)·6H_(2)O is about 60%,and the melting and solidification enthalpies of CEV can reach 98.87 J/g and 97.56 J/g,respectively.For the CPB without CEV,the specific heat capacity,thermal conductivity,and UCS decrease with the decrease of cement-tailing ratio.For the CPB with CEV added,with the increase of CEV addition ratio,the specific heat capacity increases significantly,and the sensible heat storage capacity and latent heat storage capacity can be increased by at least 10.74%and 218.97%respectively after adding 12%CEV.However,the addition of CEV leads to the increase of pores,and the thermal conductivity and UCS both decrease with the increase of CEV addition.When cement-tailing ratio is 1:8 and 6%,9%,and 12%of CEV are added,the 28-days UCS of CPB is less than 1 MPa.Considering the heat storage capacity and cost price of backfill,the recommended proportion scheme of CPB material presents cement-tailing ratio of 1:6 and 12%CEV,and the most recommended heat storage/release temperature cycle range of CPB with added CEV is from 20 to 40℃.This work can provide theoretical basis for the utilization of heat storage backfill in green mines.展开更多
CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc...CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc volcanoes degassing.At the same time,there still remain large amounts of CaCO_(3)and its reaction products,which could be further transported into Earth's deep interior.These internal processes link atmosphere,hydrosphere and biosphere with the deep solid Earth,modifying the environments of our planet.In this review,we summarize current understanding from high pressure-temperature experiments and field petrological observations on the physical and chemical properties of CaCO_(3).In particular,the phase stability and reactions of CaCO_(3)largely control the migration and reservation of oxidized carbon in subducting slabs.Finally,we present several critical but unsolved questions on CaCO_(3)subducting in the deep mantle.展开更多
First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approxima...First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.展开更多
Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hy...Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hydrazine are the oxidizer and fuel entities,and used in solid and liquid rocket motors respectively.AP is highly toxic and led to adverse health effects,while hydrazine is carcinogenic in nature.AP is in use from the last several decades for rocket and space shuttle propulsion,while hydrazine is used in upper stage liquid propelled rocket motors.It’s a tough task to replace AP with the currently available green oxidizers;since their ballistic properties are weaker when compared to AP and also they can’t be successfully deployed in a solid rocket motor at present Some important available solid green oxidizers are ammonium nitrate(AN),ammonium dinitramide(ADN),hydroxyl ammonium nitrate(HAN),and hydrazinium nitroformate(HNF).However,AN is one of the cheap and readily available oxidizer,and has great potential to use in solid/liquid rocket motors.Tremendous progress has been envisaged till now,and more progress will be there in the coming future over the development of AN based green energetic materials(GEM’s).A concise overview has been presented over the development of phase stabilized ammonium nitrate(PSAN) and AN/KDN based green oxidizers in the present review paper.展开更多
Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition...Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.展开更多
With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the micro...With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the microstructure evolution.Specially,a systematic quantitative investigation on the diffusional growth of IMCs is of great necessity.However,the works studying the elemental diffusion behaviors of multiple-element IMCs are rare in magnesium alloy systems.The current work takes the ternary Mg-Al-Zn system as research target,and combines the diffusion couple technique,phase stability diagrams,in-situ observation technique and numerical inverse method to investigate the temperature-dependent kinetic coefficients.The parabolic growth constant(PGC)and interdiffusion coefficients for Mg solid-solution phase andγ-Mg_(17)Al_(12),β-Mg_(2)Al_(3),ε-Mg_(23)Al_(30),MgZn_(2),Mg_(2)Zn_(3),τ-Mg_(32)(Zn,Al)49 andφ-Mg_(5)Zn_(2)Al_(2) IMCs in the Mg-Al-Zn alloy system are determined.By comparing the current experimental with calculation results,the rate-controlling factor of the temperature-dependent diffusion growth ofφ,τandεternary IMCs in the Mg-Al-Zn system is further discussed in detail.展开更多
An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a st...An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.展开更多
The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on...The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.展开更多
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with differ...Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.展开更多
Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The g...Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictabl...High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.展开更多
An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of t...An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of the initial demixing time, and the volume percentage of polyvinyl alcohol separated. It was found that starch cross-linking is harmful to the phase stability of a starch-polyvinyl alcohol blend paste no matter what a type of polyvinyl alcohol is used, although the cross-linking is an effective technique for stabilizing the viscosity of a hot starch paste. The separation rate and extent all increase with the increase in the cross-linking degree of starch. However, this defect can be eliminated through introducing quaternary ammonium groups into crosslinked starch molecules. Evident effect can be achieved when the degree of substitution is as less as 0.021. Generally, increase in the DS reduces the separation rate and extent, and thereby raising the phase stability. Moreover, the effects of both starch content and PVA type on the separation are also considered. Cationization after starch cross-linking shows improved stabilities both in viscosity and phase.展开更多
Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0....Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).展开更多
The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective...The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.展开更多
La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-pro...La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y 〉 0.4, the basic perovskite structure under the anode operating condition was sustained. A cell with 0.5-ram-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25CryMn1-yO3 anode delivered a Dower density of -15 mW-cm^-2 at 850℃.展开更多
The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leaka...The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
基金Project supported by the Fund from the Ministry of Science and Technology(MOST)of China(Grant No.2018YFE0202700)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.22XNKJ30)。
文摘Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.
基金supported by National Natural Science Foundation of China(Grant Nos.U2130207,21875232,12372342)Foundation of President of China Academy of Engineering Physics(Grant Nos.YZJJZQ2023008,YZJJZQ2022006)the Foundation of China Academy of Engineering Physics(Grant Nos.CX20210015,CX20210027)。
文摘The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel strategy to enhance the stability of CL-20 by employing a thermo-sensitive polymer,poly(N-isopropylacrylamide)(PNIPAM), to modulate its phase transitions. Our approach involves the use of an in-situ polymerized polydopamine(PDA) shell as a platform for surface grafting through atom transfer radical polymerization, yielding a core-shell structured CL-20@PDA-PNIPAM. Through comprehensive characterization, the successful grafting of PNIPAM is confirmed, significantly enhanced the phase stability of CL-20. Notably, our core-shell structure exhibits a 13℃ increase in phase transition temperature compared to raw CL-20, thereby delaying the ε→a phase transition by over 80 min under combined thermal and solvent conditions. The enhanced stability is attributed to the hydrophobic nature of PNIPAM above its low critical solution temperature in water, which effectively shields the CL-20 crystal. These findings provide new insights into enhancing the stability and safety of energetic materials in complex environments, highlighting the potential of our molecular switch mechanism.
基金supported by the National Natural Science Foundation of China(Nos.51974225,51874229,51674188,51904224,51904225)the Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology,China(No.2018KJXX-083)+2 种基金the Natural Science Basic Research Plan of Shaanxi Province of China(Nos.2018JM 5161,2018JQ5183,2019JM-074)the Scientific Research Program funded by the Shaanxi Provincial Education Department,China(No.19JK0543)the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China(No.2018YQ2-01)。
文摘CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the CPB with CEV added was prepared,and the specific heat capacity,thermal conductivity,and uniaxial compressive strength(UCS)of CPB with different cement-tailing ratios and CEV addition ratios were tested,the influence of the above variables on the thermal and mechanical properties of CPB was analyzed.The results show that the maximum encapsulation capacity of expanded vermiculite for CaCl_(2)·6H_(2)O is about 60%,and the melting and solidification enthalpies of CEV can reach 98.87 J/g and 97.56 J/g,respectively.For the CPB without CEV,the specific heat capacity,thermal conductivity,and UCS decrease with the decrease of cement-tailing ratio.For the CPB with CEV added,with the increase of CEV addition ratio,the specific heat capacity increases significantly,and the sensible heat storage capacity and latent heat storage capacity can be increased by at least 10.74%and 218.97%respectively after adding 12%CEV.However,the addition of CEV leads to the increase of pores,and the thermal conductivity and UCS both decrease with the increase of CEV addition.When cement-tailing ratio is 1:8 and 6%,9%,and 12%of CEV are added,the 28-days UCS of CPB is less than 1 MPa.Considering the heat storage capacity and cost price of backfill,the recommended proportion scheme of CPB material presents cement-tailing ratio of 1:6 and 12%CEV,and the most recommended heat storage/release temperature cycle range of CPB with added CEV is from 20 to 40℃.This work can provide theoretical basis for the utilization of heat storage backfill in green mines.
基金supported by the National Key Research and Development Program of China(2019YFA0708502)the National Natural Science Foundation of China(42072052)。
文摘CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc volcanoes degassing.At the same time,there still remain large amounts of CaCO_(3)and its reaction products,which could be further transported into Earth's deep interior.These internal processes link atmosphere,hydrosphere and biosphere with the deep solid Earth,modifying the environments of our planet.In this review,we summarize current understanding from high pressure-temperature experiments and field petrological observations on the physical and chemical properties of CaCO_(3).In particular,the phase stability and reactions of CaCO_(3)largely control the migration and reservation of oxidized carbon in subducting slabs.Finally,we present several critical but unsolved questions on CaCO_(3)subducting in the deep mantle.
基金Project(u0837601)supported by the National Natural Science Foundation of China
文摘First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.
文摘Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hydrazine are the oxidizer and fuel entities,and used in solid and liquid rocket motors respectively.AP is highly toxic and led to adverse health effects,while hydrazine is carcinogenic in nature.AP is in use from the last several decades for rocket and space shuttle propulsion,while hydrazine is used in upper stage liquid propelled rocket motors.It’s a tough task to replace AP with the currently available green oxidizers;since their ballistic properties are weaker when compared to AP and also they can’t be successfully deployed in a solid rocket motor at present Some important available solid green oxidizers are ammonium nitrate(AN),ammonium dinitramide(ADN),hydroxyl ammonium nitrate(HAN),and hydrazinium nitroformate(HNF).However,AN is one of the cheap and readily available oxidizer,and has great potential to use in solid/liquid rocket motors.Tremendous progress has been envisaged till now,and more progress will be there in the coming future over the development of AN based green energetic materials(GEM’s).A concise overview has been presented over the development of phase stabilized ammonium nitrate(PSAN) and AN/KDN based green oxidizers in the present review paper.
基金supported by the National Natural Science Foundation of China (61604131,62025403)the Natural Science Foundation of Zhejiang Province (LY19F040009)+1 种基金the Fundamental Research Funds of Zhejiang SciTech University (23062120-Y)the Open Project of Key Laboratory of Solar Energy Utilization and Energy Saving Technology of Zhejiang Province (ZJS-OP-2020-07)
文摘Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.
基金funded by the National Natural Science Foundation of China(No.51801116 and 52001176)the Shandong Province Key Research and Development Plan(No.2019GHZ019 and 2021SFGC1001)the Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities(No.2020KJA002).
文摘With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the microstructure evolution.Specially,a systematic quantitative investigation on the diffusional growth of IMCs is of great necessity.However,the works studying the elemental diffusion behaviors of multiple-element IMCs are rare in magnesium alloy systems.The current work takes the ternary Mg-Al-Zn system as research target,and combines the diffusion couple technique,phase stability diagrams,in-situ observation technique and numerical inverse method to investigate the temperature-dependent kinetic coefficients.The parabolic growth constant(PGC)and interdiffusion coefficients for Mg solid-solution phase andγ-Mg_(17)Al_(12),β-Mg_(2)Al_(3),ε-Mg_(23)Al_(30),MgZn_(2),Mg_(2)Zn_(3),τ-Mg_(32)(Zn,Al)49 andφ-Mg_(5)Zn_(2)Al_(2) IMCs in the Mg-Al-Zn alloy system are determined.By comparing the current experimental with calculation results,the rate-controlling factor of the temperature-dependent diffusion growth ofφ,τandεternary IMCs in the Mg-Al-Zn system is further discussed in detail.
文摘An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
基金This work was financially supported by the National Natural Science Foundation of China(No.51401036)the Hunan Provincial Natural Science Foundation of China(No.14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)the Key Laboratory of Efficient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).
文摘The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.
基金Funded by the National Natural Science Foundation of China(No50078019)
文摘Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.
基金This work is supported by the Key Technologies Research and Development Program of Liaoning Province(2013201018).
文摘Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
基金the National Natural Science Foundation of China(No.51671020)the Fundamental Research Funds for the Central Universities(No.FRF-MP-19-013).
文摘High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.
文摘An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of the initial demixing time, and the volume percentage of polyvinyl alcohol separated. It was found that starch cross-linking is harmful to the phase stability of a starch-polyvinyl alcohol blend paste no matter what a type of polyvinyl alcohol is used, although the cross-linking is an effective technique for stabilizing the viscosity of a hot starch paste. The separation rate and extent all increase with the increase in the cross-linking degree of starch. However, this defect can be eliminated through introducing quaternary ammonium groups into crosslinked starch molecules. Evident effect can be achieved when the degree of substitution is as less as 0.021. Generally, increase in the DS reduces the separation rate and extent, and thereby raising the phase stability. Moreover, the effects of both starch content and PVA type on the separation are also considered. Cationization after starch cross-linking shows improved stabilities both in viscosity and phase.
基金supported by the National Natural Science Foundation of China(51004069)the National Science Fund for Distinguished Young Scholars(51225401)+1 种基金China Postdoctoral Science Foundation(201104254)the Innovation Program of Shanghai Municipal Education Commission and Shanghai University(14YZ013 and SDCX2012002)
文摘Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).
基金Supported by the National Key Technologies R&D Program of China under Grant No 2016YFB0901500the National Nature Science Foundation of China under Grant Nos 51725206 and 51421002
文摘The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.
基金supported by the National Natural Science Foundation of China (Nos. 20646002 and 20676061)
文摘La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y 〉 0.4, the basic perovskite structure under the anode operating condition was sustained. A cell with 0.5-ram-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25CryMn1-yO3 anode delivered a Dower density of -15 mW-cm^-2 at 850℃.
基金National Natural Science Foundation of China,Grant/Award Numbers:51861005,52071092,U20A20237Guangxi Natural Science Foundation,Grant/Award Numbers:2019GXNSFDA245023,2019GXNSFGA245005,2020GXNSFGA297004,2021GXNSFFA196002Guangxi Bagui Scholar Foundation。
文摘The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.