We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra...We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.展开更多
The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in associatio...The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.展开更多
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b...The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.展开更多
Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-trea...Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-treated samples, we obtain the following results: the first endothermic peak corresponds to the desorption of physical or chemical absorption, the second one is related to the structural phase transition from brookite to anatase then to rutile, and this structural phase transition is beneficial to the grain growth of nanocrystal展开更多
We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functio...We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications.展开更多
In both the canonical ensemble and grand canonical ensemble,the thermodynamic stability and phase structure of Einstein-Euler-Heisenberg-AdS black holes are studied.We derive the Hawking temperature,Helmholtz free ene...In both the canonical ensemble and grand canonical ensemble,the thermodynamic stability and phase structure of Einstein-Euler-Heisenberg-AdS black holes are studied.We derive the Hawking temperature,Helmholtz free energy,Gibbs potential,entropy and heat capacity of the black holes.We compute the minimum temperature to find that a phase transition may happen at the lowest point.The entropy-temperature diagram consists of two parts.The upper part belonging to the large black holes under the influence from the electromagnetic self-interactions keeps the positive heat capacity,leading the huge compact objects to survive.The lower curves corresponding to small black holes show that the heat capacity of the tiny black holes is negative,which means that the nonlineareffect-corrected smaller sources will evaporate.The further discussions show that the nonlinear effect modifies the thermodynamic quantities,but the corrections limited by the nonlinear factorμwith allowed values can not change the properties and the phase structure fundamentally and thoroughly.We argue that the influence from self-interaction can not make the Einstein-Euler-Heisenberg-AdS black holes to split under the second law of thermodynamics.展开更多
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves...La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.展开更多
The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5,...The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.展开更多
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were stud...To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.展开更多
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount...Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.展开更多
The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution elec...The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.展开更多
New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructu...New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructures,and compressive properties of the alloys in the as-cast state were investigated.Results showed that both alloys were composed of BCC and cubic Laves phases.In terms of mechanical properties,the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi,whereas a promising plastic strain of around 15.0%was retained in CrHfNbTaTi.The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution.Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation,which deteriorated yield strength and accelerated brittleness.展开更多
The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigate...The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigated. The samples P1, P2 and P3 consisted of five phases: Mg2Ni, MgNi2, Mg, Ni and MgO. The weight loss of Mg element remarkably increased at 1200 W. The addition of extra Mg significantly promoted the reaction between Mg and Ni. Mg2Ni, MgNi2, and a small amount of Ni and MgO phases were present in the samples PM (pestie milling) and BM (ball milling). The sample PM has a homogeneous microstructure, and the contents of Mg2Ni and MgNi2 were approximately consistent with those of the Mg-Ni alloy under the equilibrium conditions. The maximum hydrogen storage capacity of the sample BM was 1.72 wt.% and the sample can be activated easily at 573 K (only 3 activation cycles).展开更多
The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gr...The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gradient approximation. Among the five crystallographic structures that have been investigated, the cubic phase is found to be more stable than the hexagonal ones. A structural phase transition from ZB to WC in Moll, NaC1 to NiAs in TcH and NaCI to ZB to NiAs in RuH is also predicted under high pressure. The calculated elastic constants indicate that all the three hydrides are mechanically stable at ambient pressure.展开更多
The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is...The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.展开更多
La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and th...La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.展开更多
Blends of PC and PPSQ (A) with high M-w and good ladderlike regularity or PPSQ(B) with low M-w and more defective Si-atoms in its structure have been prepared by solution casting. The dispersed spheres (PPSQ(A)-rich) ...Blends of PC and PPSQ (A) with high M-w and good ladderlike regularity or PPSQ(B) with low M-w and more defective Si-atoms in its structure have been prepared by solution casting. The dispersed spheres (PPSQ(A)-rich) are unevenly dispersed in the continuous PC-rich phase and there is no phase-inversion as PPSQ(A) content increases when the percentage of PPSQ(A) is not more than 70%. PPSQ(B)-rich spheres are evenly dispersed in the continuous phase (PC-rich) and phase-inversion occurs when PPSQ(B) percentage is up to 70%. T-g of PPSQ(A)/PC or PPSQ(B)/PC at some compositions are lower than that of pure PC due to the enlarged free-volume of PC-rich phase because some spheres of rigid PPSQ chains are included in the PC-rich phase. PC and PPSQ(A) or PPSQ(B) are partially compatible. The compatibility of PC and PPSQ(B) is better than that of PC and PPSQ(A) with high M-w and good ladderlike regularity. Heat history has some influence on the T(g)s and compatibility of PPSQ(A)/PC and PPSQ(B)/PC blends.展开更多
In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical prope...In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.展开更多
Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to ...Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440)the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100)the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903)。
文摘We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674377 and 11634015)the National Key R&D Program of China(Grant Nos.2017YFA0302904 and 2016YFA0300502)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020200)supported by the Youth Innovation Promotion Association of CAS
文摘The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the National Basic Research Program of China under Grant No 2011CB808200the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.
文摘Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-treated samples, we obtain the following results: the first endothermic peak corresponds to the desorption of physical or chemical absorption, the second one is related to the structural phase transition from brookite to anatase then to rutile, and this structural phase transition is beneficial to the grain growth of nanocrystal
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474273 and 11634003the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2017154
文摘We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications.
基金Supported partly by the Shanghai Key Laboratory of Astrophysics(8DZ2271600)。
文摘In both the canonical ensemble and grand canonical ensemble,the thermodynamic stability and phase structure of Einstein-Euler-Heisenberg-AdS black holes are studied.We derive the Hawking temperature,Helmholtz free energy,Gibbs potential,entropy and heat capacity of the black holes.We compute the minimum temperature to find that a phase transition may happen at the lowest point.The entropy-temperature diagram consists of two parts.The upper part belonging to the large black holes under the influence from the electromagnetic self-interactions keeps the positive heat capacity,leading the huge compact objects to survive.The lower curves corresponding to small black holes show that the heat capacity of the tiny black holes is negative,which means that the nonlineareffect-corrected smaller sources will evaporate.The further discussions show that the nonlinear effect modifies the thermodynamic quantities,but the corrections limited by the nonlinear factorμwith allowed values can not change the properties and the phase structure fundamentally and thoroughly.We argue that the influence from self-interaction can not make the Einstein-Euler-Heisenberg-AdS black holes to split under the second law of thermodynamics.
基金Project (51001043) supported by the National Natural Science Foundation of ChinaProject (NCET2011) supported by Program for New Century Excellent Talents in University, China+4 种基金Project (201104390) supported by China Postdoctoral Science Special FoundationProject (20100470990) supported by China Postdoctoral Science FoundationProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, ChinaProject (2011J1003) supported by Baotou Science and Technology Project, ChinaProject (B2010-13) supported by the Doctoral Foundation of Henan Polytechnic University, China
文摘La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.
基金Project(NCET-11-0554) supported by the Program for New Century Excellent Talents in University,ChinaProject(2011BAE22B04) supported by the National Key Technology R&D Program,ChinaProject(51271206) supported by the National Natural Science Foundation of China
文摘The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.
基金supported by the National Natural Science Foundation of China(Nos.21303157 and 21106123)the Natural Science Foundation of Hebei Province,China(No.B2012203104)+1 种基金the China Postdoctoral Science Foundation Project(2013M541201)the Research Fund for the Doctoral Program of Higher Education of China(20131333120008)
文摘To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.
基金the Natural Science Foundation of Anhui Province (070414159)the Science Research Foundation for the Candidates of Academic Leaders of Anhui Proince
文摘Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.
基金Project(2008329)supported by Liaoning Provincial Education Ministry,ChinaProject supported by the Key Laboratory of Material Processing & Control of Liaoning Province,China
文摘The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.
基金supported by the National Natural Science Foundation of China(No.51604173)the Natural Science Foundation of Jiangsu Higher Education Institution of China(No.18KJB430012)。
文摘New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructures,and compressive properties of the alloys in the as-cast state were investigated.Results showed that both alloys were composed of BCC and cubic Laves phases.In terms of mechanical properties,the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi,whereas a promising plastic strain of around 15.0%was retained in CrHfNbTaTi.The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution.Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation,which deteriorated yield strength and accelerated brittleness.
基金the Natural Science Foundation of Anhui Province, China (No. 070414159)
文摘The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigated. The samples P1, P2 and P3 consisted of five phases: Mg2Ni, MgNi2, Mg, Ni and MgO. The weight loss of Mg element remarkably increased at 1200 W. The addition of extra Mg significantly promoted the reaction between Mg and Ni. Mg2Ni, MgNi2, and a small amount of Ni and MgO phases were present in the samples PM (pestie milling) and BM (ball milling). The sample PM has a homogeneous microstructure, and the contents of Mg2Ni and MgNi2 were approximately consistent with those of the Mg-Ni alloy under the equilibrium conditions. The maximum hydrogen storage capacity of the sample BM was 1.72 wt.% and the sample can be activated easily at 573 K (only 3 activation cycles).
文摘The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gradient approximation. Among the five crystallographic structures that have been investigated, the cubic phase is found to be more stable than the hexagonal ones. A structural phase transition from ZB to WC in Moll, NaC1 to NiAs in TcH and NaCI to ZB to NiAs in RuH is also predicted under high pressure. The calculated elastic constants indicate that all the three hydrides are mechanically stable at ambient pressure.
基金Projects(50323008, 50574104) supported by the National Natural Science Foundation of ChinaProject (04JJ3084) supported by the Natural Science Foundation of Hunan Province, China
文摘The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.
基金This work is financially supported by the Natural Science Foundation of Anhui Province, China (No. 050440602) the Key Project of Chinese Ministry of Education (No. 205070) and the Scientific Research Foundation for the Candidates of Aca-demic Leaders, Education Department of Anhui Province, China (No. 2005hbz08).
文摘La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.
基金This work was supported by Fund of Head of College of Chemistry,Shandong University.
文摘Blends of PC and PPSQ (A) with high M-w and good ladderlike regularity or PPSQ(B) with low M-w and more defective Si-atoms in its structure have been prepared by solution casting. The dispersed spheres (PPSQ(A)-rich) are unevenly dispersed in the continuous PC-rich phase and there is no phase-inversion as PPSQ(A) content increases when the percentage of PPSQ(A) is not more than 70%. PPSQ(B)-rich spheres are evenly dispersed in the continuous phase (PC-rich) and phase-inversion occurs when PPSQ(B) percentage is up to 70%. T-g of PPSQ(A)/PC or PPSQ(B)/PC at some compositions are lower than that of pure PC due to the enlarged free-volume of PC-rich phase because some spheres of rigid PPSQ chains are included in the PC-rich phase. PC and PPSQ(A) or PPSQ(B) are partially compatible. The compatibility of PC and PPSQ(B) is better than that of PC and PPSQ(A) with high M-w and good ladderlike regularity. Heat history has some influence on the T(g)s and compatibility of PPSQ(A)/PC and PPSQ(B)/PC blends.
基金financially supported by the National Natural Science Foundation of China(No.52174291)。
文摘In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.
基金Project Supported bythe Talents Development Foundation of Inner Mongolia Autonomous Region (200608)
文摘Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.