The anatase-rutile phase transformation of TiO_2 doped cerium up to 5 molpercent was studied by X-ray diffraction and X-ray photoelectron spectroscopy. The samples wereprepared by sol-gel auto-igniting synthesis proce...The anatase-rutile phase transformation of TiO_2 doped cerium up to 5 molpercent was studied by X-ray diffraction and X-ray photoelectron spectroscopy. The samples wereprepared by sol-gel auto-igniting synthesis process from a TiO(NO_3)_2-Ce(NO_3)_2-NH_4NO_3-citricacid complex compound system. The combusted amorphous powders were calcined at differenttemperatures. Significant structural changes were observed during the various stages of the phasetransformation. It was concluded that at low dopant contents, cerium ions were incorporated into theTiO_2 structure, and the anatase phase was stabilized; but at larger amounts, part of the dopantwas segregated on the surface of TiO_2 and the rutile formation was accelerated at elevatedcalcination temperature.展开更多
Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence...Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.展开更多
Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of...Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of as-derived phases were calculated by Sherrer equation. The lattice parameters of the as-derived anatase and rutile unit cells were calculated and compared with those of standard lattice parameters on PDF cards. It was shown that the smaller the grain sizes, the larger the lattice deformation. The lattice parameter a has the negative deviation from the standard and the lattice parameter c has the positive deviation for both phases. The particles sizes had preferential in-fluence on the longer parameter between the lattice parameters of a and c. With increasing temperatures, the lattice parameters of a and c in both phases approached to the equilibrium state. The larger lattice deformation facilitated the nucleation process, which lowered the transformation temperature. During the transformation from nano-scale anatase to rutile, besides the mechanism involving retention of the {112} pseudo-close-packed planes of oxygen in anatase as the {100} pseudo-close-packed planes in rutile, the new phase occurred by relaxation of lattice deformation and adjustment of the atomic sites in parent phase. The orientation relationships were suggested to be anatase {101}//rutile {101} and anatase <201>//rutile<111>, and the habit plane was anatase (101).展开更多
The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase...The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase transition of TiO2 in TiO2/vermiculite composites calcined at different temperatures was characterized by using XRD and Raman. The results show that at calcination temperature of 800℃ appeared the anatase phase of TiO2 in TiO2/vermiculite nanocomposites, while pure TiO2 is all converted to rutile at the same temperature. The average crystal size of TiO2 in TiO2/vermiculite nanocomposites and pure TiO2 both increase with the calcination temperature. The average grain size of TiO2 in TiO2/vermiculite nanocomposites is less than that of pure TiO2 at the same calcination temperature. The results also show that the silicon-oxygen structure in layered vermiculite structure can effectively depress the phase transformation from anatase to rutile, thus enhancing the transition temperature and inhibitting the growth of anatase crystals.展开更多
文摘The anatase-rutile phase transformation of TiO_2 doped cerium up to 5 molpercent was studied by X-ray diffraction and X-ray photoelectron spectroscopy. The samples wereprepared by sol-gel auto-igniting synthesis process from a TiO(NO_3)_2-Ce(NO_3)_2-NH_4NO_3-citricacid complex compound system. The combusted amorphous powders were calcined at differenttemperatures. Significant structural changes were observed during the various stages of the phasetransformation. It was concluded that at low dopant contents, cerium ions were incorporated into theTiO_2 structure, and the anatase phase was stabilized; but at larger amounts, part of the dopantwas segregated on the surface of TiO_2 and the rutile formation was accelerated at elevatedcalcination temperature.
基金supported by the National Natural Science Foundation of China (21203185, 21373209)the National Basic Research Program of China (2014CB239400)
文摘Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.
文摘Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of as-derived phases were calculated by Sherrer equation. The lattice parameters of the as-derived anatase and rutile unit cells were calculated and compared with those of standard lattice parameters on PDF cards. It was shown that the smaller the grain sizes, the larger the lattice deformation. The lattice parameter a has the negative deviation from the standard and the lattice parameter c has the positive deviation for both phases. The particles sizes had preferential in-fluence on the longer parameter between the lattice parameters of a and c. With increasing temperatures, the lattice parameters of a and c in both phases approached to the equilibrium state. The larger lattice deformation facilitated the nucleation process, which lowered the transformation temperature. During the transformation from nano-scale anatase to rutile, besides the mechanism involving retention of the {112} pseudo-close-packed planes of oxygen in anatase as the {100} pseudo-close-packed planes in rutile, the new phase occurred by relaxation of lattice deformation and adjustment of the atomic sites in parent phase. The orientation relationships were suggested to be anatase {101}//rutile {101} and anatase <201>//rutile<111>, and the habit plane was anatase (101).
文摘The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase transition of TiO2 in TiO2/vermiculite composites calcined at different temperatures was characterized by using XRD and Raman. The results show that at calcination temperature of 800℃ appeared the anatase phase of TiO2 in TiO2/vermiculite nanocomposites, while pure TiO2 is all converted to rutile at the same temperature. The average crystal size of TiO2 in TiO2/vermiculite nanocomposites and pure TiO2 both increase with the calcination temperature. The average grain size of TiO2 in TiO2/vermiculite nanocomposites is less than that of pure TiO2 at the same calcination temperature. The results also show that the silicon-oxygen structure in layered vermiculite structure can effectively depress the phase transformation from anatase to rutile, thus enhancing the transition temperature and inhibitting the growth of anatase crystals.