期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Over Voltage Fault due to Disconnection of Consumer’s Transformer Neutral Wire
1
作者 Erdene Adiyasuren Enkh-Od Erdene +1 位作者 Sergelen Byambaa Shagdarsuren Gantumur 《Journal of Energy and Power Engineering》 2023年第1期11-14,共4页
Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected fr... Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts. 展开更多
关键词 Neutral connection and neutral wire phase and line voltage single-phase residential consumer transformer neutral cut off asymmetric load current protective earth
下载PDF
Analysis of a novel phase-shifted soft switch converter
2
作者 蒋志宏 黄立培 张义 《China Welding》 EI CAS 2002年第1期67-71,共5页
In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter u... In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss. 展开更多
关键词 phase shifted control zero voltage and zero current switch
下载PDF
Voltage phase angle jump characteristic of DFIGs in case of weak grid connection and grid fault 被引量:6
3
作者 Xinshou TIAN Gengyin LI +3 位作者 Yongning CHI Weisheng WANG Haiyan TANG Xiang LI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第2期256-264,共9页
In the condition of connecting large scale doubly-fed induction generators (DFIGs) into weak grid,the closely coupled interactions between wind generators and power grid becomes more severe.Some new fault characterist... In the condition of connecting large scale doubly-fed induction generators (DFIGs) into weak grid,the closely coupled interactions between wind generators and power grid becomes more severe.Some new fault characteristics including voltage phase angle jump will emerge,which will influence the power quality of power system.However,there are very few studies focusing on the mechanism of voltage phase angle jump under grid fault in a weak grid with wind turbine integration.This paper focuses on the scientific issues and carries out mechanism studies from different aspects,including mathematical deduction,field data analysis and time domain simulation.Based on the analysis of transientcharacteristics of DFIGs during the grid fault,this paper points out that the change of terminal voltage phase angle in DFIGs is an electromagnetism transition process,which is different from conventional synchronous generator.Moreover,the impact on transient characteristics of voltage phase angle are revealed in terms of fault ride through(FRT) control strategies,control parameters of current inner-loop of rotor-side converter and grid strength. 展开更多
关键词 DFIGs Weak grid Fault ride through voltage phase angle jump
原文传递
Fault Ride Through Strategy of DFIG Using Rotor Voltage Direct Compensation Control Under Voltage Phase Angle Jump 被引量:5
4
作者 Xinshou Tian Weisheng Wang +3 位作者 Xiang Li Yongning Chi Yan Li Haiyan Tang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第4期515-523,共9页
Wind power has developed rapidly in recent years,and large-scale wind power facilities connected to power grids will bring many new challenges.Some new operation charac-teristics of power grids with doubly-fed inducti... Wind power has developed rapidly in recent years,and large-scale wind power facilities connected to power grids will bring many new challenges.Some new operation charac-teristics of power grids with doubly-fed induction generator(DFIG)may exhibit,for example voltage phase angle jumps(VPAJ).VPAJ can negatively impact the fault ride through(FRT)performance of DFIG.This paper firstly investigates the physical mechanism and the operation characteristics of DFIG with VPAJ.It is noted that the current control strategies designed for voltage amplitude changes are not suitable for VPAJ.Secondly,the paper develops an FRT optimization control strategy under VPAJ which optimizes the DFIG operation characteristics.Finally,simulations of a 250 MW wind farm are presented which validate the proposed FRT strategy. 展开更多
关键词 DFIG FRT strategy rotor voltage direct compensation control voltage phase angle jump
原文传递
Transient characteristics and adaptive fault ride through control strategy of DFIGs considering voltage phase angle jump 被引量:2
5
作者 Xinshou TIAN Yongning CHI +3 位作者 Weisheng WANG Gengyin LI Haiyan TANG Zhen WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第5期757-766,共10页
Wind power in China has experienced fast development in recent years. However, areas rich in wind power resources are often far away from loads centers,which leads to weak connection between wind turbines and power gr... Wind power in China has experienced fast development in recent years. However, areas rich in wind power resources are often far away from loads centers,which leads to weak connection between wind turbines and power grid. When a grid fault occurs, new transient characteristics in weak grid integrated with doubly-fed induction generators(DFIGs) may present, such as voltage phase angle jump. Current control strategies for wind turbine with strong grid connection are hard to be adapted under weak gird connection. This paper explores the transient characteristics of DFIGs under voltage phase angle jump through analyzing the operation and control characteristics of DFIGs connected into weak grid when the voltage phase angle jumps. Fault ride through(FRT) control strategy of DFIGs based on adaptive phase-locked loop is proposed to adapt weak grid condition. The reference frame of the proposed strategy will be changed in real-time to track the operation condition of DFIGs according to the terminal voltage, and different phase tracking method is adopted during the grid fault. Field data analysis and time domain simulation are carried out. The results show that voltage phase angle jumps when a grid fault occurs, which weakens the FRT capability of DFIGs, and the proposed FRT control strategy can optimize transient characteristics of DFIGs, and improve the FRT capability of DFIGs. 展开更多
关键词 DFIGs voltage phase angle jump Transient characteristics Adaptive FRT control strategy
原文传递
A low power CMOS VCO using inductive-biasing with high performance FoM
6
作者 刘伟豪 黄鲁 《Journal of Semiconductors》 EI CAS CSCD 2016年第4期100-105,共6页
A novel voltage-controlled oscillator(VCO) topology with low voltage and low power is presented. It employed the inductive-biasing to build a feedback path between the tank and the MOS gate to enhance the voltage ga... A novel voltage-controlled oscillator(VCO) topology with low voltage and low power is presented. It employed the inductive-biasing to build a feedback path between the tank and the MOS gate to enhance the voltage gain from output nodes of the tank to the gate node of the cross-coupled transistor. Theoretical analysis using timevarying phase noise theory derives closed-form symbolic formulas for the 1/f^2 phase noise region, showing that this feedback path could improve the phase noise performance. The proposed VCO is fabricated in TSMC 0.13 m CMOS technology. Working under a 0.3 V supply voltage with 1.2 m W power consumption, the measured phase noise of the VCO is –119.4 d Bc/Hz at 1 MHz offset frequency from the carrier of 4.92 GHz, resulting in an Fo M of 192.5 d Bc/Hz. 展开更多
关键词 low power inductive-biasing feedback path phase noise voltage controlled oscillators(VCO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部