The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communicat...The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.展开更多
基金The National Key R&D Program of China(No.2020YFE0200600)。
文摘The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.