Electron emission plays a dominant role in plasma-cathode interactions and is a key factor in many plasma phenomena and industrial applications.It is necessary to illustrate the various electron emission mechanisms an...Electron emission plays a dominant role in plasma-cathode interactions and is a key factor in many plasma phenomena and industrial applications.It is necessary to illustrate the various electron emission mechanisms and the corresponding applicable description models to evaluate their impacts on discharge properties.In this study,detailed expressions of the simplified formulas valid for field emission to thermo-field emission to thermionic emission typically used in the numerical simulation are proposed,and the corresponding application ranges are determined in the framework of the Murphy-Good theory,which is commonly regarded as the general model and to be accurate in the full range of conditions of the validity of the theory.Dimensionless parameterization was used to evaluate the emission current density of the Murphy-Good formula,and a deviation factor was defined to obtain the application ranges for different work functions(2.5‒5 eV),cathode temperatures(300‒6000 K),and emitted electric fields(10^(5) to 10^(10) V·m^(-1)).The deviation factor was shown to be a nonmonotonic function of the three parameters.A comparative study of particle number densities in atmospheric gas discharge with a tungsten cathode was performed based on the one-dimensional implicit particle-in-cell(PIC)with the Monte Carlo collision(MCC)method according to the aforementioned application ranges.It was found that small differences in emission current density can lead to variations in the distributions of particle number density due to changes in the collisional environment.This study provides a theoretical basis for selecting emission models for subsequent numerical simulations.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error...Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关...针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关(long-range dependence,LRD)参数-Hurst指数,Hurst指数用于判断光伏功率数据是否满足长相关性,并通过最大李雅普诺夫指数(Lyapunov)计算出模型最大可预测时间尺度;其次,采用随机微分法建立FBM光伏功率预测模型,同时估计FBM预测模型参数值;最后,选取澳大利亚沙漠知识太阳能中心(Desert Knowledge Australia Solar Center,DKASC)、美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)以及北京国能日新科技有限公司的光伏功率数据集,从不同的地理环境、不同的气候特征、不同的规模大小电站进行验证。仿真结果表明,该模型较传统的Kalman、LSTM模型具有更高的预测精度,可为光伏并网的稳定和安全运行提供更好的理论支持,对电网调度部门具有较高的参考价值。展开更多
基金supported in part by National Natural Science Foundation of China(Nos.52176087 and 52277164)Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51721004)+1 种基金Scientific Research Program Funded by Shaanxi Provincial Education Department(No.23JP115)Youth Innovation Team of Shaanxi Universities,in part by the Natural Science Basic Research Plan of Shaanxi Province(Nos.2021J Z-48 and 2020JM-462).
文摘Electron emission plays a dominant role in plasma-cathode interactions and is a key factor in many plasma phenomena and industrial applications.It is necessary to illustrate the various electron emission mechanisms and the corresponding applicable description models to evaluate their impacts on discharge properties.In this study,detailed expressions of the simplified formulas valid for field emission to thermo-field emission to thermionic emission typically used in the numerical simulation are proposed,and the corresponding application ranges are determined in the framework of the Murphy-Good theory,which is commonly regarded as the general model and to be accurate in the full range of conditions of the validity of the theory.Dimensionless parameterization was used to evaluate the emission current density of the Murphy-Good formula,and a deviation factor was defined to obtain the application ranges for different work functions(2.5‒5 eV),cathode temperatures(300‒6000 K),and emitted electric fields(10^(5) to 10^(10) V·m^(-1)).The deviation factor was shown to be a nonmonotonic function of the three parameters.A comparative study of particle number densities in atmospheric gas discharge with a tungsten cathode was performed based on the one-dimensional implicit particle-in-cell(PIC)with the Monte Carlo collision(MCC)method according to the aforementioned application ranges.It was found that small differences in emission current density can lead to variations in the distributions of particle number density due to changes in the collisional environment.This study provides a theoretical basis for selecting emission models for subsequent numerical simulations.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.
基金Sponsored by the Basic Research Fundation of Beijing Institute of Technology (200705422009)
文摘Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
文摘针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关(long-range dependence,LRD)参数-Hurst指数,Hurst指数用于判断光伏功率数据是否满足长相关性,并通过最大李雅普诺夫指数(Lyapunov)计算出模型最大可预测时间尺度;其次,采用随机微分法建立FBM光伏功率预测模型,同时估计FBM预测模型参数值;最后,选取澳大利亚沙漠知识太阳能中心(Desert Knowledge Australia Solar Center,DKASC)、美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)以及北京国能日新科技有限公司的光伏功率数据集,从不同的地理环境、不同的气候特征、不同的规模大小电站进行验证。仿真结果表明,该模型较传统的Kalman、LSTM模型具有更高的预测精度,可为光伏并网的稳定和安全运行提供更好的理论支持,对电网调度部门具有较高的参考价值。