In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us...Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.展开更多
A series of novel thermotropic liquid crystalline polyesters bearing nonlinear optical azobenzene side group were synthesized by high temperature solution polycondensation and their structures,thermal stability, phas...A series of novel thermotropic liquid crystalline polyesters bearing nonlinear optical azobenzene side group were synthesized by high temperature solution polycondensation and their structures,thermal stability, phase transition behavior and crystallinity were characterized by IR,elemental analysis, TG-DTA, polarizing optical microscope (POM) equipped with a hot stage and X-ray diffraction techniques. The results demonstrate that all the synthesized polyesters exhibit nematic liquid crystalline phases and show relatively high glass transition temperatures and good thermal stability.展开更多
A novel chiral methylpropargyl ester containing azobenzene moiety(S)-(-)-3-methyl-3-{4-[4-(n-octyloxy)phenylazophenyl]carbonyl}oxy-1-propyne 3(C25H30N2O3,Mr = 406.51) was synthesized and characterized by IR,NM...A novel chiral methylpropargyl ester containing azobenzene moiety(S)-(-)-3-methyl-3-{4-[4-(n-octyloxy)phenylazophenyl]carbonyl}oxy-1-propyne 3(C25H30N2O3,Mr = 406.51) was synthesized and characterized by IR,NMR and single-crystal X-ray diffraction.The crystal is of monoclinic system,space group P21 with a=6.7610(17),b=7.675(2),c=22.749(7),β=97.613(6)°,V=1170.1(6)3,Z=2,Dc=1.154,F(000)=436,μ=0.076 mm-1,R=0.0544 and wR=0.1569 for 2444 observed reflections with Ⅰ〉2σ(Ⅰ).Structure analysis proved that the azobenzene presents a trans form, and intermolecular hydrogen bonds yield a 3D framework. The ehiral acetylene carrying azobenzene moieties can be a potential alternative nonlinear optical, helical polymer, and liquid crystalline material.展开更多
Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the prob...Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the probe beam, and on the ellipticity of the pump beam. Both the growth and decay processes of the birefringence signal can be described by known biexponential equations. The rate constants and the amplitudes associated with the growth process of the photoinduced birefringence are observed to display a linear dependence with the pump beam intensity. A new dynamic model of the photoinduced birefringence is presented taking into account the contributions of both the bans and cis isomers of azobenzene groups and the local polymer segments. The numerical treatment of this model shows good agreement with the experimental data in the whole writing-erasing processes of the photoinduced birefringence conducted in our polymer samples.展开更多
Montmorillonite/cationic azobenzene dye(p-(δ-triethylammoniobutoxy)-p'-methyl- azobenzene bromide) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure cat...Montmorillonite/cationic azobenzene dye(p-(δ-triethylammoniobutoxy)-p'-methyl- azobenzene bromide) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure cationic azo-dye, the thermal stability of the intercalated dye was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated dye shifted towards longer wave length by 38 nm. This could be ascribed to the strong conjugation of cationic azo-dye supramolecular order structure(J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. UV/vis spectra data show that the intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and daylight cis-to-trans back reaction. FTIR indicates the successful intercalation of cationic azo-dye into the montmorillonite interlayer.展开更多
A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self- assembled network in nematic liquid crystals resulting in liquid crystal gels with disti...A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self- assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.展开更多
Phase-change memory(PCM)has considerable promise for new applications based on von Neumann and emerging neuromorphic computing systems.However,a key challenge in harnessing the advantages of PCM devices is achieving h...Phase-change memory(PCM)has considerable promise for new applications based on von Neumann and emerging neuromorphic computing systems.However,a key challenge in harnessing the advantages of PCM devices is achieving high-speed operation of these devices at elevated temperatures,which is critical for the efficient processing and reliable storage of data at full capacity.Herein,we report a novel PCM device based on Ta-doped antimony telluride(Sb2Te),which exhibits both high-speed characteristics and excellent high-temperature characteristics,with an operation speed of 2 ns,endurance of >106 cycles,and reversible switching at 140℃.The high coordination number of Ta and the strong bonds between Ta and Sb/Te atoms contribute to the robustness of the amorphous structure,which improves the thermal stability.Furthermore,the small grains in the three-dimensional limit lead to an increased energy efficiency and a reduced risk of layer segregation,reducing the power consumption and improving the long-term endurance.Our findings for this new Ta-Sb2Te material system can facilitate the development of PCMs with improved performance and novel applications.展开更多
The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl...The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl methacrylates with varying methylene groups (n = 0, 2, 6) were used to synthesize a series of azobenzene-containing amphiphilic triblock copolymers PAnC–PEG–PAnC by atom transfer radical polymerization (ATRP). Differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and one-dimensional X-ray diffraction (1D WAXD) have shown that the glass transition temperatures of these copolymers decreased with increasing n, PA0C–PEG–PA0C has no mesophase, while both PA2C–PEG–PA2C and PA6C–PEG–PA6C have a nematic mesophase. These differences derive from the length of spacer groups between the polymer backbone and side-chain LC monomers.展开更多
The intermolecular reductive coupling of nitrites with azobenzene induced by SmI2 was studied. Amidine derivatives were prepared in good yields under neutral and mild conditions.
A series of polymers bearing azobenzene and carbazole groups for photorefractive purpose were prepared viapost-azo-coupling reaction.The successful reaction was identified by spectroscopic analysis and gel permeationc...A series of polymers bearing azobenzene and carbazole groups for photorefractive purpose were prepared viapost-azo-coupling reaction.The successful reaction was identified by spectroscopic analysis and gel permeationchromatography.This approach is more facile compared with the direct polymerization of corresponding functionalmonomer.The polymers prepared have weight average molecular weight of higher than 1.5×10~4 and are easily soluble incommon organic solvents like chloroform and tetrahydrofuran,polymer films with high optical quality could be easilyfabricated through solution casting.Glass transition temperature (T_(?)) of the polymers ranges from 60℃ to 182℃,dependingon the alkylene spacer length between the functional side group and the polymer backbone,and the polymers are relativelystable under 300℃.展开更多
Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was great...Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.展开更多
A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational mo...A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational motion around the N=N bond. The simulation find that the CNN bond angle bending vibrations also play a significant role in the vibronic coupling between the HOMO and LUMO, which essentially leads a nonadiabatic transition of the molecule to the electronic ground state.展开更多
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,...The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.展开更多
The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenz...The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.展开更多
An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) p...An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.展开更多
Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crys...Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.展开更多
Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing...Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.展开更多
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic...A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.展开更多
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a...Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23098).
文摘Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.
文摘A series of novel thermotropic liquid crystalline polyesters bearing nonlinear optical azobenzene side group were synthesized by high temperature solution polycondensation and their structures,thermal stability, phase transition behavior and crystallinity were characterized by IR,elemental analysis, TG-DTA, polarizing optical microscope (POM) equipped with a hot stage and X-ray diffraction techniques. The results demonstrate that all the synthesized polyesters exhibit nematic liquid crystalline phases and show relatively high glass transition temperatures and good thermal stability.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘A novel chiral methylpropargyl ester containing azobenzene moiety(S)-(-)-3-methyl-3-{4-[4-(n-octyloxy)phenylazophenyl]carbonyl}oxy-1-propyne 3(C25H30N2O3,Mr = 406.51) was synthesized and characterized by IR,NMR and single-crystal X-ray diffraction.The crystal is of monoclinic system,space group P21 with a=6.7610(17),b=7.675(2),c=22.749(7),β=97.613(6)°,V=1170.1(6)3,Z=2,Dc=1.154,F(000)=436,μ=0.076 mm-1,R=0.0544 and wR=0.1569 for 2444 observed reflections with Ⅰ〉2σ(Ⅰ).Structure analysis proved that the azobenzene presents a trans form, and intermolecular hydrogen bonds yield a 3D framework. The ehiral acetylene carrying azobenzene moieties can be a potential alternative nonlinear optical, helical polymer, and liquid crystalline material.
基金This work was supported by the National Natural Science Foundation of China (No. 19604015) and Guangdong Provincial Natural Science Foundation (No. 980279 and 980346).
文摘Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the probe beam, and on the ellipticity of the pump beam. Both the growth and decay processes of the birefringence signal can be described by known biexponential equations. The rate constants and the amplitudes associated with the growth process of the photoinduced birefringence are observed to display a linear dependence with the pump beam intensity. A new dynamic model of the photoinduced birefringence is presented taking into account the contributions of both the bans and cis isomers of azobenzene groups and the local polymer segments. The numerical treatment of this model shows good agreement with the experimental data in the whole writing-erasing processes of the photoinduced birefringence conducted in our polymer samples.
基金the Applied and Basal Research Foundation of Sichuan Province(No.03JY029-026-2)
文摘Montmorillonite/cationic azobenzene dye(p-(δ-triethylammoniobutoxy)-p'-methyl- azobenzene bromide) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure cationic azo-dye, the thermal stability of the intercalated dye was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated dye shifted towards longer wave length by 38 nm. This could be ascribed to the strong conjugation of cationic azo-dye supramolecular order structure(J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. UV/vis spectra data show that the intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and daylight cis-to-trans back reaction. FTIR indicates the successful intercalation of cationic azo-dye into the montmorillonite interlayer.
文摘A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self- assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.
基金supported by the National Key Research and Development Program of China(2017YFA0206101,2017YFB0701703,2017YFA0206104,2017YFB0405601,2018YFB0407500)the National Natural Science Foundation of China(91964204,61874178,61874129)+1 种基金the Science and Technology Council of Shanghai(20501120300,18DZ2272800)the Shanghai Sailing Program(19YF1456100).
文摘Phase-change memory(PCM)has considerable promise for new applications based on von Neumann and emerging neuromorphic computing systems.However,a key challenge in harnessing the advantages of PCM devices is achieving high-speed operation of these devices at elevated temperatures,which is critical for the efficient processing and reliable storage of data at full capacity.Herein,we report a novel PCM device based on Ta-doped antimony telluride(Sb2Te),which exhibits both high-speed characteristics and excellent high-temperature characteristics,with an operation speed of 2 ns,endurance of >106 cycles,and reversible switching at 140℃.The high coordination number of Ta and the strong bonds between Ta and Sb/Te atoms contribute to the robustness of the amorphous structure,which improves the thermal stability.Furthermore,the small grains in the three-dimensional limit lead to an increased energy efficiency and a reduced risk of layer segregation,reducing the power consumption and improving the long-term endurance.Our findings for this new Ta-Sb2Te material system can facilitate the development of PCMs with improved performance and novel applications.
文摘The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl methacrylates with varying methylene groups (n = 0, 2, 6) were used to synthesize a series of azobenzene-containing amphiphilic triblock copolymers PAnC–PEG–PAnC by atom transfer radical polymerization (ATRP). Differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and one-dimensional X-ray diffraction (1D WAXD) have shown that the glass transition temperatures of these copolymers decreased with increasing n, PA0C–PEG–PA0C has no mesophase, while both PA2C–PEG–PA2C and PA6C–PEG–PA6C have a nematic mesophase. These differences derive from the length of spacer groups between the polymer backbone and side-chain LC monomers.
文摘The intermolecular reductive coupling of nitrites with azobenzene induced by SmI2 was studied. Amidine derivatives were prepared in good yields under neutral and mild conditions.
基金This work was supported by the National Natural Science Foundation of China(No.20274042)
文摘A series of polymers bearing azobenzene and carbazole groups for photorefractive purpose were prepared viapost-azo-coupling reaction.The successful reaction was identified by spectroscopic analysis and gel permeationchromatography.This approach is more facile compared with the direct polymerization of corresponding functionalmonomer.The polymers prepared have weight average molecular weight of higher than 1.5×10~4 and are easily soluble incommon organic solvents like chloroform and tetrahydrofuran,polymer films with high optical quality could be easilyfabricated through solution casting.Glass transition temperature (T_(?)) of the polymers ranges from 60℃ to 182℃,dependingon the alkylene spacer length between the functional side group and the polymer backbone,and the polymers are relativelystable under 300℃.
基金This work was financially supported by the Science Council of Sichuan Province, China (No.03JY029-026-2).
文摘Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.
基金supported by the National Natural Science Foundation of China (No.20773168)Natural Science Foundation Project of CQ CSTC (No.2006BB2367 and 2006BB5368)Project of Science Technology Foundation of Chongqing Education Committee (No.KJ070506).
文摘A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational motion around the N=N bond. The simulation find that the CNN bond angle bending vibrations also play a significant role in the vibronic coupling between the HOMO and LUMO, which essentially leads a nonadiabatic transition of the molecule to the electronic ground state.
基金the National Natural Science Foundation of China(Grant Nos.21773291,61904118,and 22002102)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190935 and BK20190947)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJA210005,19KJB510012,19KJB120005,and 19KJB430034)the Fund from the Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices(Grant No.SZS201812)the Science Fund from the Jiangsu Key Laboratory for Environment Functional Materialsthe State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences.
文摘The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.
文摘The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.
基金This work was supported by National Natural Science Foundation of China (No. 59873001)Scientific Foundation for Returned Overseas Chinese Scholars, Ministry of Education.
文摘An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.
文摘Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61922035 and 11904118)
文摘Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.
基金supported by the National Key Research and Development Projects(No.2018YFC0808600)。
文摘A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466)
文摘Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.