Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a...Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.展开更多
The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified...The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified through physical experiments.In the discrete element simulation experiment,there were three mixing stages in the mixing process of the particles.The particle motion conditions at different rotational speeds were rolling,cascading,cataracting and centrifuging.The lower the filling degree,the higher the particle mixing efficiency.The radial trajectory of the particles was approximated as an elliptical helix that continuously shrank towards the axis.The research results indicated that under the same speed and filling conditions,the motion of brown rice particles in both the simulated and physical test environments is rolling and the drop height is the same.展开更多
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ...The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentr...The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentration equations are approximated by a standard Galerkin method.We estimate the error of the numerical solutions in the sense of the Lqnorm.To linearize the full discrete scheme of the problem,we present an efficient two-grid method based on the idea of Newton iteration.The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid.Error estimation for the two-grid solutions is analyzed in detail.It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H=O(h^1/2).Numerical experiments are given to illustrate the efficiency of the two-grid method.展开更多
In this work, we show that an excessive lattice heating problem can occur in the diode electrostatic discharge (ESD) protection device connected to a V<sub>DD</sub> bus in the popular diode input prot...In this work, we show that an excessive lattice heating problem can occur in the diode electrostatic discharge (ESD) protection device connected to a V<sub>DD</sub> bus in the popular diode input protection scheme, which is favorably used in CMOS RF ICs. To figure out the reason for the excessive lattice heating, we construct an equivalent circuit for input human-body model (HBM) test environment of a CMOS chip equipped with the diode protection circuit, and execute mixed-mode transient simulations utilizing a 2-D device simulator. We analyze the simulation results in detail to show out that a parasitic pnp bipolar transistor action relating nearby p<sup>+</sup>-substrate contacts is responsible for the excessive lattice heating in the diode protection device, which has never been focused before anywhere.展开更多
As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotto...As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotton stalk,the cutting conditions of mixed materials were obtained,and the method of cutting was determined.A multi-edge toothed cutters was created,and a cutting device was built.It was preliminarily determined that the number of teeth in the cutters was 8,the clearance between the teeth and between the tooth and fixed blade was 3 mm,the speed of the high-speed cutter was 800 r/min,and the speed difference between the high-and low-speed cutters was-300 r/min.Test results show that the ratio of residual film to total residual film sampling mass was(2.22±0.30)%,(19.19±2.02)%,(58.94±3.19)% and(20.65±2.05)%,respectively,when the maximum outer profile size in the range of[0,20)mm,[20,100)mm,[100,500)mm and[500,~)mm.The mass of cotton stalks with lengths of[0,50)mm,[50,100)mm and[100,~)mm accounted for(32.57±1.5)%,(27.77±1.3)%and(39.66±1.75)%,respectively,and the cutting power consumption was(85.41±15.63)kJ.The test results can provide a basis for the subsequent membrane-impurity mixed material cutting technology,as well as some guidance for the separation of it.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466)
文摘Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.
基金the National Natural Science Foundation of China(Grant No.32001423)Natural Science Foundation of Hubei Province(Grant No.2020CFB471)+2 种基金Huazhong Agricultural University College Students Science and Technology Innovation Fund Project(Grant No.2022255)Fundamental Research Funds for the Central Universities(Grant No.2662020GXPY017)First Division Alar City Science and Technology Plan Project(Grant No.2023ZB01)for financial support and all of the persons who assisted in this writing.
文摘The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified through physical experiments.In the discrete element simulation experiment,there were three mixing stages in the mixing process of the particles.The particle motion conditions at different rotational speeds were rolling,cascading,cataracting and centrifuging.The lower the filling degree,the higher the particle mixing efficiency.The radial trajectory of the particles was approximated as an elliptical helix that continuously shrank towards the axis.The research results indicated that under the same speed and filling conditions,the motion of brown rice particles in both the simulated and physical test environments is rolling and the drop height is the same.
文摘The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
基金Project supported by the State Key Program of National Natural Science Foundation of China(No.11931003)the National Natural Science Foundation of China(Nos.41974133,11671157,11971410)。
文摘The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentration equations are approximated by a standard Galerkin method.We estimate the error of the numerical solutions in the sense of the Lqnorm.To linearize the full discrete scheme of the problem,we present an efficient two-grid method based on the idea of Newton iteration.The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid.Error estimation for the two-grid solutions is analyzed in detail.It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H=O(h^1/2).Numerical experiments are given to illustrate the efficiency of the two-grid method.
文摘In this work, we show that an excessive lattice heating problem can occur in the diode electrostatic discharge (ESD) protection device connected to a V<sub>DD</sub> bus in the popular diode input protection scheme, which is favorably used in CMOS RF ICs. To figure out the reason for the excessive lattice heating, we construct an equivalent circuit for input human-body model (HBM) test environment of a CMOS chip equipped with the diode protection circuit, and execute mixed-mode transient simulations utilizing a 2-D device simulator. We analyze the simulation results in detail to show out that a parasitic pnp bipolar transistor action relating nearby p<sup>+</sup>-substrate contacts is responsible for the excessive lattice heating in the diode protection device, which has never been focused before anywhere.
基金financially supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China(Grant No.52065058)Graduate Education Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.Xj2022G085)+2 种基金the Key Industry Innovation Development Support Plan of South Xinjiang(Grant No.2020DB008)the Open Fund of Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2006)Scientific and technological innovation team of Xinjiang Production and Construction Corps(Grant No.2020CB013).
文摘As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotton stalk,the cutting conditions of mixed materials were obtained,and the method of cutting was determined.A multi-edge toothed cutters was created,and a cutting device was built.It was preliminarily determined that the number of teeth in the cutters was 8,the clearance between the teeth and between the tooth and fixed blade was 3 mm,the speed of the high-speed cutter was 800 r/min,and the speed difference between the high-and low-speed cutters was-300 r/min.Test results show that the ratio of residual film to total residual film sampling mass was(2.22±0.30)%,(19.19±2.02)%,(58.94±3.19)% and(20.65±2.05)%,respectively,when the maximum outer profile size in the range of[0,20)mm,[20,100)mm,[100,500)mm and[500,~)mm.The mass of cotton stalks with lengths of[0,50)mm,[50,100)mm and[100,~)mm accounted for(32.57±1.5)%,(27.77±1.3)%and(39.66±1.75)%,respectively,and the cutting power consumption was(85.41±15.63)kJ.The test results can provide a basis for the subsequent membrane-impurity mixed material cutting technology,as well as some guidance for the separation of it.