Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it...Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.展开更多
The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse...The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.展开更多
This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the dig...This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the digital internally Hamming weighted compression filter. Two methods for suppression of time sidelobe of the digital pulse compressor are employed. First, the LFM waveform is modified by using cubic phase pre distortion for reducing the effect of Fresnel ripples in small TB product LFM waveform. Secondly, anti aliasing filter is used before A/D converter for reducing spectrum skirt level of the returned LFM waveform. The parameters of the compression filter implemented with IMSA100 DSP are programmable. The experiments show that the peak time sidelobe level of the digital pulse compressor is less than -32 dB for TB product of 20.展开更多
To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent proces...To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.展开更多
In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmit...In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmitted radar signal is coded into six codes based on pulse compression waveform such as linear frequency modulation (LFM), Frank code, P1, P2, P3 and P4 codes, the latter four are poly phase codes. The classification system is based on drawing Choi Willliams Distribution (CWD) picture and extracting features from it. In this study, various new types of features are extracted from CWD picture and then a pattern recognition method is used to recognize the spectrum. In fact, signals from CWD picture are defined using biometric techniques. We also employ false reject rate (FRR) and false accept rate (FAR) which are two types of fault measurement criteria that are deploy in biometric papers. Fairly good results are obtained for recognition of Signal to Noise Ratio (-11 dB).展开更多
This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet ...This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.展开更多
As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, ...As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, noise, clutter and jamming signals linearly. Considering that these signals have many types,two typical combinations are selected to construct the multi-target echo signal and the simulated echo signal is used as the input of the signal processing environment. This environment mainly adopts pulse compression,moving target indication and detection technologies to process the echo signal.It is found that the frequency domain method is more desirable for the pulse compression effect than the time domain method,and multi-target range information can be measured from the moving target indication result after using a double delay canceller. A new moving target detecting method is proposed,which can present the positive and negative velocity accurately with the multi-target range and velocity measured simultaneously. Simulation results indicate that the potential targets are detected from the chaotic radar echo signals successfully,and their range and velocity can be figured out correctly in the built radar signal processing environment.展开更多
Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing...Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.展开更多
文摘Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.
文摘The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.
文摘This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the digital internally Hamming weighted compression filter. Two methods for suppression of time sidelobe of the digital pulse compressor are employed. First, the LFM waveform is modified by using cubic phase pre distortion for reducing the effect of Fresnel ripples in small TB product LFM waveform. Secondly, anti aliasing filter is used before A/D converter for reducing spectrum skirt level of the returned LFM waveform. The parameters of the compression filter implemented with IMSA100 DSP are programmable. The experiments show that the peak time sidelobe level of the digital pulse compressor is less than -32 dB for TB product of 20.
基金Supported by the National Natural Science Foundation of China (No.60302009).
文摘To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.
文摘In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmitted radar signal is coded into six codes based on pulse compression waveform such as linear frequency modulation (LFM), Frank code, P1, P2, P3 and P4 codes, the latter four are poly phase codes. The classification system is based on drawing Choi Willliams Distribution (CWD) picture and extracting features from it. In this study, various new types of features are extracted from CWD picture and then a pattern recognition method is used to recognize the spectrum. In fact, signals from CWD picture are defined using biometric techniques. We also employ false reject rate (FRR) and false accept rate (FAR) which are two types of fault measurement criteria that are deploy in biometric papers. Fairly good results are obtained for recognition of Signal to Noise Ratio (-11 dB).
基金funded by the National Sciences Foundation of China(Grant No.91337103)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.
基金The"13th Five-Year"Equipment Pre-Research Common Technology Fund of China(No.41411010202)the National Natural Science Foundation of China(No.61571113)the Natural Science Foundation of Jiangsu Province(No.BK20160697)
文摘As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, noise, clutter and jamming signals linearly. Considering that these signals have many types,two typical combinations are selected to construct the multi-target echo signal and the simulated echo signal is used as the input of the signal processing environment. This environment mainly adopts pulse compression,moving target indication and detection technologies to process the echo signal.It is found that the frequency domain method is more desirable for the pulse compression effect than the time domain method,and multi-target range information can be measured from the moving target indication result after using a double delay canceller. A new moving target detecting method is proposed,which can present the positive and negative velocity accurately with the multi-target range and velocity measured simultaneously. Simulation results indicate that the potential targets are detected from the chaotic radar echo signals successfully,and their range and velocity can be figured out correctly in the built radar signal processing environment.
基金Projects(61171133,61271442)supported by the National Natural Science Foundation of ChinaProject(61025006)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(B110404)supported by the Innovation Program for Excellent Postgraduates of National University of Defense Technology,China
文摘Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.