To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply ...To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.展开更多
In this study,the effects of soil spatial variability in braced excavations are investigated by focusing on three structural responses:wall bending moments,wall shear forces,and strut forces.The soil spatial variabili...In this study,the effects of soil spatial variability in braced excavations are investigated by focusing on three structural responses:wall bending moments,wall shear forces,and strut forces.The soil spatial variability is modeled using random field theory,and the generated soil parameters are mapped onto a finite element model.A procedure for automating the Monte Carlo simulation,which is used for probabilistic analysis,is described.A case study demonstrates that the soil spatial variability has a considerable effect on the excavation-induced structural responses.Furthermore,a reliability analysis is performed to estimate the failure probability for three structural failure modes.The results demonstrate the importance of considering soil spatial variability in the structural assessment of braced excavati ons.展开更多
基金Financial supports from National Science Foundation of China(Grant Nos.51609072,51879091,51479050 and 41630638)the National Key Basic Research Program of China("973" Program)(Grant No.2015CB057901)the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No.201501035-03)
文摘To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.
基金The second author would like to thank the support received from the National Natural Science Foundation of China through Grant No.51808405.
文摘In this study,the effects of soil spatial variability in braced excavations are investigated by focusing on three structural responses:wall bending moments,wall shear forces,and strut forces.The soil spatial variability is modeled using random field theory,and the generated soil parameters are mapped onto a finite element model.A procedure for automating the Monte Carlo simulation,which is used for probabilistic analysis,is described.A case study demonstrates that the soil spatial variability has a considerable effect on the excavation-induced structural responses.Furthermore,a reliability analysis is performed to estimate the failure probability for three structural failure modes.The results demonstrate the importance of considering soil spatial variability in the structural assessment of braced excavati ons.