The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with are...The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.展开更多
In this paper, we introduce a novel merger of antenna arrays with scanning beam patterns, and Orthogonal Frequency Division Multiplexing (OFDM) systems. Controlled time varying phase shifts are applied to the antenna ...In this paper, we introduce a novel merger of antenna arrays with scanning beam patterns, and Orthogonal Frequency Division Multiplexing (OFDM) systems. Controlled time varying phase shifts are applied to the antenna array elements mounted at the base station with beam patterns directed toward the desired user. This creates a small beam pattern movement called Beam Pattern Scanning (BPS). In rich scattering environments BPS creates a time varying environment leading to time diversity exploitable at the receiver enhances its probability-of-error performance. Here, we apply OFDM signals to BPS antenna arrays, and we achieve: (1) directionality, which supports Space Division Multiple Access (SDMA);and (2) a time diversity gain, which leads to high performance. We discuss the structure of the base station antenna array and the OFDM receiver that exploits time diversity. We also introduce the merger of BPS and multi-carrier OFDM (MC-OFDM) systems. In MC-OFDM each bit is transmitted over all sub-carriers after serial to parallel conversion. BPS/ MC-OFDM receiver exploits both time diversity inherent in BPS, and frequency diversity inherent in MC-OFDM transmission technique. Simulation results show high Probability-of-error performance is achie- vable via BPS/OFDM and BPS/MC-OFDM schemes comparing to the traditional OFDM and MC-OFDM, respectively. Simulations also reveal that MC-OFDM system as well as its merger with BPS is capable of mitigating large Peak-to-Average Ratio (PAPR) problem in traditional OFDM system. In addition, performance simulations with coded OFDM (COFDM) and coded MC-OFDM (MC-COFDM) and their merger with BPS are studied.展开更多
The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be contro...The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.展开更多
This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on ...This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.展开更多
Hydrogel microwell arrays (HMAs) have been wildly used for engineering cell microenvironment by providing well-controlled biophysical and biochemical cues (e.g., three dimensional (3D) physical boundary, biomolecule c...Hydrogel microwell arrays (HMAs) have been wildly used for engineering cell microenvironment by providing well-controlled biophysical and biochemical cues (e.g., three dimensional (3D) physical boundary, biomolecule coating) for cells. Among these cues, the oxygen microenvironment has shown great effect on the cellular physiological processes. However, it is currently technically challenging to characterize the local oxygen microenvironment within HMAs. Here, we prepared HMAs with different crosslinking concentrations to adjust the structural and physical properties of HMAs. Then we introduced a scanning electrochemical microscopy (SECM)-based electrochemical method to map the surface topography and oxygen microenvironment around HMAs. The SECM results show both the 3D topography and the oxygen permeability of HMAs in aqueous solution. The obtained oxygen permeability of HMAs increases with increasing the crosslinking concentration, and the microwell boundaries show the highest oxygen permeability throughout HMAs. This work demonstrates that SECM offers a high spatial resolution and in-situ method for characterization of the topography and the local oxygen permeability of HMAs, which can provide useful information for better engineering cell microenvironment through optimizing HMAs design.展开更多
A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in de...A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.展开更多
A novel technique termed nonredundant array scanning holography based on the principle of optical heterodyne scanning holography and the tomographic technique of coded aperture imaging is proposed. The system designed...A novel technique termed nonredundant array scanning holography based on the principle of optical heterodyne scanning holography and the tomographic technique of coded aperture imaging is proposed. The system designed in terms of this technique codes an object optically and decodes its coded image digitally. It can realize optical tomograms of three-dimensional objects. It also has potentially practical value due to its compact structure. The computer simulations present the principle of the technique. Some experiments at the proof-principle level are performed to test the principle.展开更多
Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical vi...Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.展开更多
In this review,research progress on the wideband wide-angle scanning two-dimensional phased arrays is summarized.The importance of the wideband and the wide-angle scanning characteristics for satellite communication i...In this review,research progress on the wideband wide-angle scanning two-dimensional phased arrays is summarized.The importance of the wideband and the wide-angle scanning characteristics for satellite communication is discussed.Issues like grating lobe avoidance,active reflection coefficient suppression and gain fluctuation reduction are emphasized in this review.Besides,techniques to address these issues and methods to realize the wideband wide-angle scanning phased array are reviewed.展开更多
Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe widt...Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe width of the acoustic beams and the incident angle on the borehole wall can be controlled by means of adjusting parameters, such as the element number and the delay time between the neighboring array elements of linear phased array transmitter. The steered angle of longitudinal waves generated in the formation satisfies the Snell’s law for plane waves when the incident angle on the borehole wall is less than the first critical angle. When the lobe width of the acoustic beams is narrow and the steered angle is less than the first critical angle, the acoustic field in the formation can be approximately calculated given that the linear phased array is put in the formation without borehole. The technique of scanning radiation acoustic field can be applied to enhancing investigation resolution and signal-to-noise ratio in crosswell seismic survey and borehole acoustic reflection imaging.展开更多
Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitorin...Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.展开更多
In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the...In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.展开更多
Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal ac...Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal acquisition and processing method controlled by computer was introduced. The amplification of weak signal, the matching of time sequence, the fast peak holding with low leakage, the high speed A/D conversion and nonlinear correction were discussed. This method can acquire the peak signal of every ring of sector SSPA with high accuracy and in real time. It can be used to detect the distribution of space light energy.展开更多
Utility of microwave bootlace lens is well established. For broadband and wide scanning network, it is required to op-timize and use features of this lens for better communication and scanning device. This report pres...Utility of microwave bootlace lens is well established. For broadband and wide scanning network, it is required to op-timize and use features of this lens for better communication and scanning device. This report presents the design of a compact 2D bootlace lens with five focal feed for multiple beam forming. This design will help in reducing phase error and will provide power efficiency and better resolution during target tracking. This design will provide better aperture efficiency and scanning angle.展开更多
A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointin...A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.展开更多
文摘The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.
文摘In this paper, we introduce a novel merger of antenna arrays with scanning beam patterns, and Orthogonal Frequency Division Multiplexing (OFDM) systems. Controlled time varying phase shifts are applied to the antenna array elements mounted at the base station with beam patterns directed toward the desired user. This creates a small beam pattern movement called Beam Pattern Scanning (BPS). In rich scattering environments BPS creates a time varying environment leading to time diversity exploitable at the receiver enhances its probability-of-error performance. Here, we apply OFDM signals to BPS antenna arrays, and we achieve: (1) directionality, which supports Space Division Multiple Access (SDMA);and (2) a time diversity gain, which leads to high performance. We discuss the structure of the base station antenna array and the OFDM receiver that exploits time diversity. We also introduce the merger of BPS and multi-carrier OFDM (MC-OFDM) systems. In MC-OFDM each bit is transmitted over all sub-carriers after serial to parallel conversion. BPS/ MC-OFDM receiver exploits both time diversity inherent in BPS, and frequency diversity inherent in MC-OFDM transmission technique. Simulation results show high Probability-of-error performance is achie- vable via BPS/OFDM and BPS/MC-OFDM schemes comparing to the traditional OFDM and MC-OFDM, respectively. Simulations also reveal that MC-OFDM system as well as its merger with BPS is capable of mitigating large Peak-to-Average Ratio (PAPR) problem in traditional OFDM system. In addition, performance simulations with coded OFDM (COFDM) and coded MC-OFDM (MC-COFDM) and their merger with BPS are studied.
文摘The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174322 and 11074273)the Research Council of Norway (GrantNo. 186923/I30)
文摘This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.
基金the National Natural Science Foundation of China (Grant 21775117)the Technology Foundation for Selected Overseas Chinese Scholar of Shannxi Province (Grant 2017010)the General Financial Grant from the China Postdoctoral Science Foundation (Grant 2016M592773).
文摘Hydrogel microwell arrays (HMAs) have been wildly used for engineering cell microenvironment by providing well-controlled biophysical and biochemical cues (e.g., three dimensional (3D) physical boundary, biomolecule coating) for cells. Among these cues, the oxygen microenvironment has shown great effect on the cellular physiological processes. However, it is currently technically challenging to characterize the local oxygen microenvironment within HMAs. Here, we prepared HMAs with different crosslinking concentrations to adjust the structural and physical properties of HMAs. Then we introduced a scanning electrochemical microscopy (SECM)-based electrochemical method to map the surface topography and oxygen microenvironment around HMAs. The SECM results show both the 3D topography and the oxygen permeability of HMAs in aqueous solution. The obtained oxygen permeability of HMAs increases with increasing the crosslinking concentration, and the microwell boundaries show the highest oxygen permeability throughout HMAs. This work demonstrates that SECM offers a high spatial resolution and in-situ method for characterization of the topography and the local oxygen permeability of HMAs, which can provide useful information for better engineering cell microenvironment through optimizing HMAs design.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51575134 and 51205083)
文摘A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.
文摘A novel technique termed nonredundant array scanning holography based on the principle of optical heterodyne scanning holography and the tomographic technique of coded aperture imaging is proposed. The system designed in terms of this technique codes an object optically and decodes its coded image digitally. It can realize optical tomograms of three-dimensional objects. It also has potentially practical value due to its compact structure. The computer simulations present the principle of the technique. Some experiments at the proof-principle level are performed to test the principle.
基金partly supported by the JSPS Grant-in-Aid for Scientific Research #17300032
文摘Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.
基金This work is supported by the National Natural Science Foundation of China(Nos.61731005,61331007)the Outstanding Youth Foundation of Sichuan Province(No.2015JQ0011).
文摘In this review,research progress on the wideband wide-angle scanning two-dimensional phased arrays is summarized.The importance of the wideband and the wide-angle scanning characteristics for satellite communication is discussed.Issues like grating lobe avoidance,active reflection coefficient suppression and gain fluctuation reduction are emphasized in this review.Besides,techniques to address these issues and methods to realize the wideband wide-angle scanning phased array are reviewed.
基金supported by the National Natural Science Foundation of China(Grant Nos.10134020 and 40374049).
文摘Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe width of the acoustic beams and the incident angle on the borehole wall can be controlled by means of adjusting parameters, such as the element number and the delay time between the neighboring array elements of linear phased array transmitter. The steered angle of longitudinal waves generated in the formation satisfies the Snell’s law for plane waves when the incident angle on the borehole wall is less than the first critical angle. When the lobe width of the acoustic beams is narrow and the steered angle is less than the first critical angle, the acoustic field in the formation can be approximately calculated given that the linear phased array is put in the formation without borehole. The technique of scanning radiation acoustic field can be applied to enhancing investigation resolution and signal-to-noise ratio in crosswell seismic survey and borehole acoustic reflection imaging.
基金support from the National Key R&D Program of China(2017YFA0700500)National Natural Science Foundation of China(61775144/61525503/61620106016/61835009/81727804)+2 种基金(Key)Project of Department of Education of Guangdong Province(2015KGJHZ002/2016KCXTD007)Guangdong Natural Science Foundation(2014A030312008,2017A030310132,2018A030313362)Shenzhen Basic Research Project(JCYJ20170818144012025/JCYJ20170818141701667/JCYJ20170412105003520/JCYJ20150930104948169).
文摘Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.
文摘In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.
基金Natural Science Foundation of Guangdong Province ( 000689 ) Foundation from Education Department ofZhejiang Province(20040446)
文摘Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal acquisition and processing method controlled by computer was introduced. The amplification of weak signal, the matching of time sequence, the fast peak holding with low leakage, the high speed A/D conversion and nonlinear correction were discussed. This method can acquire the peak signal of every ring of sector SSPA with high accuracy and in real time. It can be used to detect the distribution of space light energy.
文摘Utility of microwave bootlace lens is well established. For broadband and wide scanning network, it is required to op-timize and use features of this lens for better communication and scanning device. This report presents the design of a compact 2D bootlace lens with five focal feed for multiple beam forming. This design will help in reducing phase error and will provide power efficiency and better resolution during target tracking. This design will provide better aperture efficiency and scanning angle.
文摘A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.