Developing anatase/rutile phase-junction in Ti O_(2)to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/Ti O_(2)nanocomposites...Developing anatase/rutile phase-junction in Ti O_(2)to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/Ti O_(2)nanocomposites are developed as photocathodes for hydrogen production.The optimized Ag/Ti O_(2)nanocomposite achieves a high current density of 1.28 m A cm-2,an incident photon-to-current conversion efficiency(IPCE)of 10.8%,an applied bias photon-to-current efficiency(ABPE)of 0.32 at 390 nm and a charge carriers’lifetime up to 2000 s.Such enhancement on photoelectrochemical activity can be attributed to:(ⅰ)the generated Z-scheme system in the anatase/rutile phase-junction Ag/Ti O_(2)photocathode enhances the separation,diffusion and transformation of electron/hole pairs inside the structure,(ⅱ)Ag nanodots modification in the anatase/rutile phases leading to the tuned band gap with enhanced light absorption and(ⅲ)the formed Schottky barrier after Ag nanodots surface modification provides enough electron traps to avoid the recombination of photogenerated electrons and holes.Our results here suggest that developing phase-junction nanocomposite as photocathode will provide a new vision for their enhanced photoelectrochemical generation of hydrogen.展开更多
基金supported financially by the Academy of Scientific Research and Technology(No.6618,ASRT,Egypt)the National Key R&D Program of China(No.2016YFA0202602),the National Natural Science Foundation of China(Nos.U1663225 and 21805220)+2 种基金the Fundamental Research Funds for the Central Universities(WUT:Nos.2019Ⅲ012GX and 2020Ⅲ002GX)the Hubei Provincial Natural Science Foundation(No.2018CFB242 and 2020CFB416)supported by the State Key Laboratory of Silicate Materials for Architectures and Center for Materials Research and Analysis at Wuhan University of Technology。
文摘Developing anatase/rutile phase-junction in Ti O_(2)to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/Ti O_(2)nanocomposites are developed as photocathodes for hydrogen production.The optimized Ag/Ti O_(2)nanocomposite achieves a high current density of 1.28 m A cm-2,an incident photon-to-current conversion efficiency(IPCE)of 10.8%,an applied bias photon-to-current efficiency(ABPE)of 0.32 at 390 nm and a charge carriers’lifetime up to 2000 s.Such enhancement on photoelectrochemical activity can be attributed to:(ⅰ)the generated Z-scheme system in the anatase/rutile phase-junction Ag/Ti O_(2)photocathode enhances the separation,diffusion and transformation of electron/hole pairs inside the structure,(ⅱ)Ag nanodots modification in the anatase/rutile phases leading to the tuned band gap with enhanced light absorption and(ⅲ)the formed Schottky barrier after Ag nanodots surface modification provides enough electron traps to avoid the recombination of photogenerated electrons and holes.Our results here suggest that developing phase-junction nanocomposite as photocathode will provide a new vision for their enhanced photoelectrochemical generation of hydrogen.