In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o...In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.展开更多
A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phas...A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.展开更多
A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, ...A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.展开更多
A 3-D inorganic-organic hybrid framework microporous material [Co 3(BDC) 3(EG) 4]·2DMF was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The...A 3-D inorganic-organic hybrid framework microporous material [Co 3(BDC) 3(EG) 4]·2DMF was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The crystal structure was solved by a direct method and refined by full-matrix least-square method. The crystal is the triclinic system and belongs to space group P-1 with a=9.978(2) nm, b=11.223(2) nm, c=11.283(2) nm, α=102.26(3)°, β=113.52(3)°, γ=92.73(3)°, V=6.329(2) nm 3, Z=1, D c=1.565 Mg/m 3, M r=1 063.59, μ=1.183 mm -1, F(000)=541, GOF=1.024, R=0.044 2, wR=0.124 9.展开更多
Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppr...Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.展开更多
基金Project(51104185)supported by the National Natural Science Foundation of ChinaProject(2010QZZD003)supported by the Key Project of Central South University of Fundamental Research Funds for the Central Universities of China
文摘In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.
文摘A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.
文摘A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.
文摘A 3-D inorganic-organic hybrid framework microporous material [Co 3(BDC) 3(EG) 4]·2DMF was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The crystal structure was solved by a direct method and refined by full-matrix least-square method. The crystal is the triclinic system and belongs to space group P-1 with a=9.978(2) nm, b=11.223(2) nm, c=11.283(2) nm, α=102.26(3)°, β=113.52(3)°, γ=92.73(3)°, V=6.329(2) nm 3, Z=1, D c=1.565 Mg/m 3, M r=1 063.59, μ=1.183 mm -1, F(000)=541, GOF=1.024, R=0.044 2, wR=0.124 9.
基金supported by the National Natural Science Foundation of China(No.41274124)the National Science and Technology Major Project(No.2016ZX05014-001-008HZ)
文摘Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.