Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very ...Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.展开更多
This study presents a silicon-based pressure sensor with temperature compensation. The eight piezoresistors were designed on the polycrystalline silicon membrane and constructed by two concentric Wheatstone-bridge cir...This study presents a silicon-based pressure sensor with temperature compensation. The eight piezoresistors were designed on the polycrystalline silicon membrane and constructed by two concentric Wheatstone-bridge circuits to perform two sets of sensors. The sensor in the central circuit measures the membrane deflection caused by the combined effects of pressure and temperature, while the outer one measures only the deflection caused by the working temperature. From this arrangement, it is reliable and accurate to measure the pressure by comparing the output signals from the two concentric Wheatstone-bridge circuits. The optimal positions of the eight piezoresistors were simulated by simulation software ANSYS. The investigated pressure sensor was fabricated by the micro electro-mechanical systems (MEMS) techniques. The measuring performance and an indication of the conventional single Wheatstone-bridge pressure sensor is easily affected under variation of different working temperature and causes a maximum absolute error up to 45.5%, while the double Wheatstone-bridge pressure sensor is able to compensate the error, and reduces it down to 1.13%. The results in this paper demonstrate an effective temperature compensation performance, and have a great performance and stability in the pressure measuring system as well.展开更多
By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge ...By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.展开更多
The article designs a new type of bridge circuit with a controlled source—when the resistance on the bridge arm of the controlled source bridge circuit meets the bridge balance condition, and the bridge branch contai...The article designs a new type of bridge circuit with a controlled source—when the resistance on the bridge arm of the controlled source bridge circuit meets the bridge balance condition, and the bridge branch contains only one Current-Controlled Current Source (CCCS), a Voltage-Controlled Current Source (VCCS), a Current-Controlled Voltage Source (CCVS), or a Voltage-Controlled Voltage Source (VCVS), the circuit is called a controlled bridge circuit, which has the characteristics of bridge balance. Due to the relationship between the controlled source and the bridge arm, the sensitivity of the components on the bridge is higher mathematically and logically. When applied to measurement, engineering, automatic control, and other fields, the controlled bridge circuit has higher control ac-curacy. Mathematical derivation and simulation results prove the correctness of the bridge balance conclusion and the special properties of this bridge when applied to the measurement field.展开更多
Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circui...Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.展开更多
The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter ...The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter is often cascaded at the input side of the DAB converter.However,there are instable problems of this cascaded system due to the impedance interactions of the DAB converter and the LC filter,although the DAB converter is stable at the individual operation mode.To assess the stability of the cascaded system of the DAB converter and the LC filter,the impedance model of the DAB converter is firstly developed based on generalized state-space averaging method.The developed impedance model can be used to accurately predict the stability of the DAB converter with its LC input filter.Based on the stability analysis,the optimum filter parameter design guideline is determined.The impedance model and stability analysis are validated by the simulation and experimental results.展开更多
作为一种典型多端口变换器,三有源桥(triple active bridge,TAB)DC-DC变换器广泛应用于分布式直流系统中,其开关器件开路故障将严重影响系统运行。为降低开关故障带来的影响,该文提出TAB变换器开路故障诊断方法与容错运行策略。首先,分...作为一种典型多端口变换器,三有源桥(triple active bridge,TAB)DC-DC变换器广泛应用于分布式直流系统中,其开关器件开路故障将严重影响系统运行。为降低开关故障带来的影响,该文提出TAB变换器开路故障诊断方法与容错运行策略。首先,分析TAB变换器正常运行特性以及开关管开路故障暂态过程,提出利用TAB变换器各桥臂中点电压平均值实现开路故障定位。通过闭锁故障开关所在桥臂的驱动信号消除开路故障导致的直流偏置;然后,分析闭锁状态下TAB变换器的运行特性,确定能够保证TAB变换器实现开路故障容错运行的移相角范围,当开路故障发生于直流母线侧,调节移相角使得直流母线吸收功率,当开路故障发生于储能侧时,调节移相角使故障储能切除。实验结果验证所提方法可准确快速实现各开关管开路故障诊断,并实现容错运行,提升TAB变换器的可靠性。展开更多
基金This work is supported by Shandong Natural Science Foundation ( Key Project) under contract No. ZR2010EZ005.
文摘Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.
文摘This study presents a silicon-based pressure sensor with temperature compensation. The eight piezoresistors were designed on the polycrystalline silicon membrane and constructed by two concentric Wheatstone-bridge circuits to perform two sets of sensors. The sensor in the central circuit measures the membrane deflection caused by the combined effects of pressure and temperature, while the outer one measures only the deflection caused by the working temperature. From this arrangement, it is reliable and accurate to measure the pressure by comparing the output signals from the two concentric Wheatstone-bridge circuits. The optimal positions of the eight piezoresistors were simulated by simulation software ANSYS. The investigated pressure sensor was fabricated by the micro electro-mechanical systems (MEMS) techniques. The measuring performance and an indication of the conventional single Wheatstone-bridge pressure sensor is easily affected under variation of different working temperature and causes a maximum absolute error up to 45.5%, while the double Wheatstone-bridge pressure sensor is able to compensate the error, and reduces it down to 1.13%. The results in this paper demonstrate an effective temperature compensation performance, and have a great performance and stability in the pressure measuring system as well.
文摘By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.
文摘The article designs a new type of bridge circuit with a controlled source—when the resistance on the bridge arm of the controlled source bridge circuit meets the bridge balance condition, and the bridge branch contains only one Current-Controlled Current Source (CCCS), a Voltage-Controlled Current Source (VCCS), a Current-Controlled Voltage Source (CCVS), or a Voltage-Controlled Voltage Source (VCVS), the circuit is called a controlled bridge circuit, which has the characteristics of bridge balance. Due to the relationship between the controlled source and the bridge arm, the sensitivity of the components on the bridge is higher mathematically and logically. When applied to measurement, engineering, automatic control, and other fields, the controlled bridge circuit has higher control ac-curacy. Mathematical derivation and simulation results prove the correctness of the bridge balance conclusion and the special properties of this bridge when applied to the measurement field.
文摘Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.
文摘The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter is often cascaded at the input side of the DAB converter.However,there are instable problems of this cascaded system due to the impedance interactions of the DAB converter and the LC filter,although the DAB converter is stable at the individual operation mode.To assess the stability of the cascaded system of the DAB converter and the LC filter,the impedance model of the DAB converter is firstly developed based on generalized state-space averaging method.The developed impedance model can be used to accurately predict the stability of the DAB converter with its LC input filter.Based on the stability analysis,the optimum filter parameter design guideline is determined.The impedance model and stability analysis are validated by the simulation and experimental results.
文摘作为一种典型多端口变换器,三有源桥(triple active bridge,TAB)DC-DC变换器广泛应用于分布式直流系统中,其开关器件开路故障将严重影响系统运行。为降低开关故障带来的影响,该文提出TAB变换器开路故障诊断方法与容错运行策略。首先,分析TAB变换器正常运行特性以及开关管开路故障暂态过程,提出利用TAB变换器各桥臂中点电压平均值实现开路故障定位。通过闭锁故障开关所在桥臂的驱动信号消除开路故障导致的直流偏置;然后,分析闭锁状态下TAB变换器的运行特性,确定能够保证TAB变换器实现开路故障容错运行的移相角范围,当开路故障发生于直流母线侧,调节移相角使得直流母线吸收功率,当开路故障发生于储能侧时,调节移相角使故障储能切除。实验结果验证所提方法可准确快速实现各开关管开路故障诊断,并实现容错运行,提升TAB变换器的可靠性。