The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional...The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
Objective:To determine the main components of Astragalus membranaceus(Fisch.)Bge(A.membranaceus,Huang Qi),Astragaloside IV(AIV)and Astragalus polysaccharides(AP),to characterize their properties,evaluate their in vivo...Objective:To determine the main components of Astragalus membranaceus(Fisch.)Bge(A.membranaceus,Huang Qi),Astragaloside IV(AIV)and Astragalus polysaccharides(AP),to characterize their properties,evaluate their in vivo efficacy,and to analyze drug diffusion using dissolving microneedle(DMN)technology in vivo.Methods: Respectively,AIV-and AP-loaded DMNs comprising chitosan(CTS)and polyvinyl alcohol(PVA)were prepared via dual-mold forming.Their morphology,mechanical properties,in vivo solubility,and skin irritation characteristics were tested.In vivo efficacy was assessed in cyclophosphamide-induced immunosuppressed mice,in vivo diffusion of AIV and AP by DMNs and conventional methods was compared,and the rheological properties of AIV-CTS-PVA and AP-CTS-PVA mixtures were measured.Results: Subcutaneous dissolution and absorption of AIV-CTS-PVA and AP-CTS-PVA microneedles(MNs)at low doses(50%–17%of intraperitoneal AIV injection and 12%–4%of intravenous AP injection)reduced the spleen index and acid phosphatase activity in immunosuppressed mouse models,increased the thymus index,and achieved equivalent or better systemic therapeutic effects.Compared with injections,AIV and AP achieved controllable solid-liquid conversion through delivery with CTS-PVA MNs,resulting in highly localized aggregation within 48 h,reducing the initial explosive effect of the drug,and achieving stable and slow drug release.Conclusion: The present study enhances our understanding of the efficacy and remote effects of drug-loaded DMNs from a traditional Chinese medicine(TCM)perspective,thereby promoting the development of precise and efficient delivery of TCM and further expanding the drug-loading range and application scenarios for DMNs.展开更多
The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-change...The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .展开更多
Stratum corneum is the main obstacle for drugs to pass through the skin. Microneedles are composed of arrays of micro-projections formed with different materials, generally ranging from 25-2000 μm in height. Micronee...Stratum corneum is the main obstacle for drugs to pass through the skin. Microneedles are composed of arrays of micro-projections formed with different materials, generally ranging from 25-2000 μm in height. Microneedles straightly pierce the skin with its short needle arrays to overcome this barrier. Microneedles can be divided into several categories, for instance, solid microneedles, coated microneedles, and hollow microneedles and so on. However, all these types have their weak points related to corresponding mechanisms.In recent years, pioneering scientists have been working on these issues and some possible solutions have been investigated. This article will focus on the microneedle arrays consisting of hydrogels. Hydrogels are commonly used in drug delivery field. Hydrogel microneedles can be further divided into dissolving and degradable microneedles and phase transition microneedles. The former leaves drug with matrix in the skin. The latter has the feature that drugs in the matrix are delivered while the remaining ingredients can be easily removed from the skin after usage. For drugs which are required to be used every day, the phase transition microneedles are more acceptable. This article is written in order to summarize the advantages of these designs and summarize issues to be solved which may hinder the development of this technology.展开更多
Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common hypodermic needles,MNs must pierce the human stratum corne...Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common hypodermic needles,MNs must pierce the human stratum corneum(~10 to 20μm),without rupturing or bending during penetration.This ensures that the cargo is released at the predetermined place and time.Therefore,the ability of MN patches to sufficiently pierce the skin is a crucial requirement.In the current review,the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared.This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice.Factors that affect insertion(e.g.,geometry,material composition and cross-linking of MNs),along with recent advancements in developed strategies(e.g.,insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography)to improve the skin penetration are highlighted to provide a backdrop for future research.展开更多
Injection therapy for diabetes has poor patient compliance,and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients.In this work,to demonstrate the benefits o...Injection therapy for diabetes has poor patient compliance,and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients.In this work,to demonstrate the benefits of an alternative drug delivery technique that overcomes these issues,methacrylated gelatin hydrogel-forming microneedles integrated with metformin were developed to adjust blood glucose levels in diabetic rats.Gelatin methacryloyl microneedles(GelMA-MNs)with different degrees of substitution were successfully prepared by a micro-molding method.The resultant GelMA-MNs exhibited excellent mechanical properties and moisture resistance.Metformin,an anti-diabetic drug,was further encapsulated into the GelMA-MNs,and its release rate could be controlled by the three-dimensional cross-linked network of microneedles,thereby exhibiting sustained drug release behaviors in vitro and implying a better therapeutic effect compared with that of subcutaneous injection in diabetic rats.The drug release period could be significantly prolonged by improving the cross-link density of GelMA-MNs.The results of hypoglycemic effect evaluation show that the application of GelMA-MNs for transdermal delivery in diabetic rats has promising benefits for diabetes treatment.展开更多
Recurrent oral ulcer is a painful oral mucosal disorder that affects 20%of the world’s population.The lack of a radical cure due to its unknown underlying cause calls for innovative symptomatic treatments.This work r...Recurrent oral ulcer is a painful oral mucosal disorder that affects 20%of the world’s population.The lack of a radical cure due to its unknown underlying cause calls for innovative symptomatic treatments.This work reports a hyaluronic acid-based dissolvablemicroneedle patch(ROUMNpatch,short for recurrent oral ulcer microneedle)loaded with dexamethasone acetate,vitamin C and tetracaine hydrochloride for the treatment of recurrent oral ulcers.The ROUMN patch shows enhancement in both the anti-inflammatory effect elicited by dexamethasone and the pro-proliferation effect of vitamin C.In vitro experiments show that ROUMN has a higher efficiency in suppressing lipopolysaccharide(LPS)-induced interleukin-6(IL-6)expression than dexamethasone alone.Cell proliferation and migrationwere also significantly promoted byROUMNcompared to vitamin C alone.The healing-promoting effect of ROUMN was also verified in vivo using an acetic acid-cauterized oral ulcer model in rats.ROUMN as a treatment accelerated the healing process of oral ulcers,shortening the total healing time to 5 days compared with the 7 days required by treatment using watermelon frost,a commonly used over-the-counter(OTC)drug for oral ulcers.The rapid dissolution of the hyaluronic acid-based microneedles and the superior healing-promoting effect of the drug combination could lead to a broad application prospect of the ROUMN patch in the treatment of recurrent oral ulcers.展开更多
Background: The microneedle fractional RF handpiece used in our study (Intensif Handpiece, EndyMed Medical, Caesarea, Israel) is a novel handpiece that uses a tip with 25 non-insulated, gold plated microneedle electro...Background: The microneedle fractional RF handpiece used in our study (Intensif Handpiece, EndyMed Medical, Caesarea, Israel) is a novel handpiece that uses a tip with 25 non-insulated, gold plated microneedle electrodes. The needles are inserted into the skin by a specially designed electronically controlled, smooth motion motor minimizing patient discomfort. RF emission delivered over the whole dermal portion of the needle allows effective coagulation resulting in minimal or no bleeding, together with bulk volumetric heating. Study Design/Materials and Methods: The study included 20 patients, treated for depressed acne scars using the IntensifTM?Microneedles handpiece (EndyMed PRO Platform System, EndyMed Medical, Caesarea, Israel). The degree of clinical improvement was assessed by the global aesthetic improvement scale (GAIS) and subjects satisfaction by post treatment questionnaires. Results: The number of treatments per patient varied between 1 and 6 (average 3.3 treatments per patient). Eleven patients (55%) reported none to minimal pain, six (30%) moderate discomfort and only three (15%) reported significant pain. Objective evaluation of the improvement by a board certified dermatologist showed improvement in 95% of patients. 25% showed excellent improvement, 50% experienced good improvement, and the 20% showed minimal improvement. One patient showed no improvement. Conclusions: The presented results show that the tested electronically controlled motorized insertion, non-insulated microneedle treatment technology provides a minimal discomfort, minimal downtime, effective and safe treatment for depressed acne scars.展开更多
Similar to blood,interstitial fluid(ISF)contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis.However,current ISF extraction techniques require bulky instruments and are both time...Similar to blood,interstitial fluid(ISF)contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis.However,current ISF extraction techniques require bulky instruments and are both time-consuming and complicated,which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles.Currently,microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis.The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring,while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification.Herein,we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.展开更多
Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potenti...Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potentially prevent thrombosis via subcutaneous(SC)and intravenous(IV)administration,but there is a risk of haemorrhage via SC and IV.Thus,microneedle(MN)provides painless and sanitary alternatives to syringes and oral administration.However,the current technological process for the micro mould is complicated and expensive.The micro mould obtained via three-dimensional(3D)printing is expected to save time and cost,as well as provide a diverse range of MNs.Therefore,we explored a method for MNs array model production based on 3D printing and translate it to micro mould that can be used for fabrication of dissolving MNs patch.The results show that r-hirudin-loaded and hyaluronic acid(HA)-based MNs can achieve transdermal drug delivery and exhibit significant potential in the prevention of thromboembolic disease without bleeding in animal models.These results indicate that based on 3D printing technology,MNs combined with r-hirudin are expected to achieve diverse customizableMNs and thus realize personalized transdermal anticoagulant delivery for minimally invasive and long-term treatment of thrombotic disease.展开更多
Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applicatio...Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications.Existing schemes are limited by flexibility,biosafety,and manufacturing costs,which create large barriers for wider applications.Here,we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface,robustness of microneedles to penetrate the skin without fracture,and a simplified process to allow mass production.The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording.The normalized electrode–skin contact impedance reaches 0.98 kΩcm^(2)at 1 kHz and 1.50 kΩcm^(2)at 10 Hz,a record low value compared to previous reports and approximately 1/250 of the standard electrodes.The morphology,biosafety,and electrical/mechanical properties are fully characterized,and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized.The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording(over 8 h per night),providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.展开更多
Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypode...Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.展开更多
Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium algina...Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.展开更多
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to ...Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.展开更多
Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming pr...Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming properties of PDT,leading to unsatisfactory therapeutic outcomes.Herein,a tumor acidic microenvironment activatable dissolving microneedle(DHA@HPFe-MN)was developed to realize controlled drug release and excellent chemo-photodynamic therapy of melanoma via oxidative stress amplification.The versatile DHA@HPFe-MN was fabricated by crosslinking a self-synthesized protoporphyrin(PpIX)-ADH-hyaluronic acid(HA)conjugate HA-ADH-PpIX with“iron reservoir”PA-Fe 3+complex in the needle tip via acylhydrazone bond formation,and dihydroartemisinin(DHA)was concurrently loaded in the hydrogel network.HA-ADH-PpIX with improved water solubility averted undesired aggregation of PpIX to ensure enhanced PDT effect.DHA@HPFe-MN with sharp needle tip,efficient drug loading and excellent mechanical strength could efficiently inserted into skin and reach the melanoma sites,where the acidic pH triggered the degradation of microneedles,enabling Fe-activated and DHA-mediated oxidation treatment,as evidenced by abundant reactive oxygen species(ROS)generation.Moreover,under light irradiation,a combined chemo-photodynamic therapeutic effect was achieved with amplified ROS generation.Importantly,the Fe-catalyzed ROS production of DHA was oxygen-independent,which work in synergy with the oxygen-dependent PDT to effectively destroy tumor cells.This versatile microneedles with excellent biosafety and biodegradability can be customized as a promising localized drug delivery system for combined chemo-photodynamic therapy of melanoma.展开更多
Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects....Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects.MNs are used to deliver different kinds of therapeutics(e.g.,small molecules,macromolecules,nanomedicines,living cells,bacteria,and exosomes)for treating various skin disorders,including superficial tumors,wounds,skin infections,inflammatory skin diseases,and abnormal skin appearance.The therapeutic efficacy of MNs can be improved by integrating the advantages of multiple therapeutics to perform combination therapy.Through careful designing,MNs can be further modified with biomimetic structures for the responsive drug release from internal and external stimuli and to enhance the transdermal delivery efficiency for robust therapeutic outcomes.Some studies have proposed the use of drug-free MNs as a promising mechanotherapeutic strategy to promote wound healing,scar removal,and hair regeneration via a mechanical communication pathway.Although MNs have several advantages,the practical application of MNs suffers from problems related to industrial manufacture and clinical evaluation,making it difficult for clinical translation.In this study,we summarized the various applications,emerging challenges,and developmental prospects of MNs in skin disorders to provide information on ways to advance clinical translation.展开更多
This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers,in particular,the combination of microneedles patch(MNs patch)and low-frequen...This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers,in particular,the combination of microneedles patch(MNs patch)and low-frequency sonophoresis(SN).The hydrophilic macromolecule drug fluorescein isothiocyanate(FITC)-dextrans(FD-4:MW 4.4 kDa)was used as the model drug in our experimental design.In this study,excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs-and SNfacilitated FD-4 delivery.In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone,SN alone or untreated skin,respectively.The optimal parameters for the combination of MNs and SN included the following:10 N insertion force of MNs,4 W/cm^(2)SN intensity,6 mm radiation diameter of the SN probe,2 min application time,and the continuous mode duty cycle of SN.In addition,vertical sections of skin,clearly observed under a confocal microscope,confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers.These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin.展开更多
Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are...Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.展开更多
A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water ...A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water with dissolved salts, and particles in the wet flue gas form secondary pollution in the surrounding atmosphere. In this study, a deep purification technology for flue gas involving phase-transition agglom- eration and dehumidification (PAD) is proposed. This deep purification technology includes two technical routes: the integrated technology of phase-transition agglomeration and a wet electrostatic precipitator (PAW); and the integrated technology of phase-transition agglomeration and a mist eliminator (PAM). Industrial applications of PAW and PAM were carried out on 630 and 1000 MW coal-fired units, respectively. The results show that the average amount of recycled water obtained from wet flue gas by means of PAD is more than 4 g.(kg.℃)-1 Decreasing the wet flue gas temperature by 1.5-5.3 ℃ allows 5%-20% of the moisture in the flue gas to be recycled; therefore, this process could effectively save water resources and significantly reduce water vapor emissions. In addition, the moist plume is effectively elim- inated. With the use of this process, the ion concentration in droplets of flue gas is decreased by more than 65%, the SO3 removal efficiency from flue gas is greater than 75%, and the removal efficiency of par- ticulate matter is 92.53%.展开更多
基金supported by the National Natural Science Foundation of China(82371032,82070923)the Major Basic Research Project of the Natural Science Foundation of Shandong Province(ZR2023ZD60)+1 种基金the Taishan Scholar Program(20231255)the Academic Promotion Program of Shandong First Medical University(2019RC009).
文摘The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金supported by the National Natural Science Foundation of China(82274225)NATCM's Project of High-level Construction of Key TCM Disciplines-Beijing University of Chinese Medicine-Life Science from the Perspective of Chinese Medicine(zyyzdxk-2023263).
文摘Objective:To determine the main components of Astragalus membranaceus(Fisch.)Bge(A.membranaceus,Huang Qi),Astragaloside IV(AIV)and Astragalus polysaccharides(AP),to characterize their properties,evaluate their in vivo efficacy,and to analyze drug diffusion using dissolving microneedle(DMN)technology in vivo.Methods: Respectively,AIV-and AP-loaded DMNs comprising chitosan(CTS)and polyvinyl alcohol(PVA)were prepared via dual-mold forming.Their morphology,mechanical properties,in vivo solubility,and skin irritation characteristics were tested.In vivo efficacy was assessed in cyclophosphamide-induced immunosuppressed mice,in vivo diffusion of AIV and AP by DMNs and conventional methods was compared,and the rheological properties of AIV-CTS-PVA and AP-CTS-PVA mixtures were measured.Results: Subcutaneous dissolution and absorption of AIV-CTS-PVA and AP-CTS-PVA microneedles(MNs)at low doses(50%–17%of intraperitoneal AIV injection and 12%–4%of intravenous AP injection)reduced the spleen index and acid phosphatase activity in immunosuppressed mouse models,increased the thymus index,and achieved equivalent or better systemic therapeutic effects.Compared with injections,AIV and AP achieved controllable solid-liquid conversion through delivery with CTS-PVA MNs,resulting in highly localized aggregation within 48 h,reducing the initial explosive effect of the drug,and achieving stable and slow drug release.Conclusion: The present study enhances our understanding of the efficacy and remote effects of drug-loaded DMNs from a traditional Chinese medicine(TCM)perspective,thereby promoting the development of precise and efficient delivery of TCM and further expanding the drug-loading range and application scenarios for DMNs.
文摘The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .
基金supported by the Pro jects of National Science Foundation of China (No. 81373366 and 81173001)Funds for Interdisciplinary Pro jects of Medicine and Engineering by Shanghai Jiao Tong University (No. YG2013MS52 and YG2013MS62)
文摘Stratum corneum is the main obstacle for drugs to pass through the skin. Microneedles are composed of arrays of micro-projections formed with different materials, generally ranging from 25-2000 μm in height. Microneedles straightly pierce the skin with its short needle arrays to overcome this barrier. Microneedles can be divided into several categories, for instance, solid microneedles, coated microneedles, and hollow microneedles and so on. However, all these types have their weak points related to corresponding mechanisms.In recent years, pioneering scientists have been working on these issues and some possible solutions have been investigated. This article will focus on the microneedle arrays consisting of hydrogels. Hydrogels are commonly used in drug delivery field. Hydrogel microneedles can be further divided into dissolving and degradable microneedles and phase transition microneedles. The former leaves drug with matrix in the skin. The latter has the feature that drugs in the matrix are delivered while the remaining ingredients can be easily removed from the skin after usage. For drugs which are required to be used every day, the phase transition microneedles are more acceptable. This article is written in order to summarize the advantages of these designs and summarize issues to be solved which may hinder the development of this technology.
基金the European Horizon 2020 Research and Innovation Programme under Grant Agreement No.899349(5D NanoPrinting).
文摘Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common hypodermic needles,MNs must pierce the human stratum corneum(~10 to 20μm),without rupturing or bending during penetration.This ensures that the cargo is released at the predetermined place and time.Therefore,the ability of MN patches to sufficiently pierce the skin is a crucial requirement.In the current review,the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared.This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice.Factors that affect insertion(e.g.,geometry,material composition and cross-linking of MNs),along with recent advancements in developed strategies(e.g.,insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography)to improve the skin penetration are highlighted to provide a backdrop for future research.
基金supported by the National Natural Science Foundation of China(No.51873194)the Natural Science Foundation of Zhejiang Province,China(No.LY18E030006).
文摘Injection therapy for diabetes has poor patient compliance,and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients.In this work,to demonstrate the benefits of an alternative drug delivery technique that overcomes these issues,methacrylated gelatin hydrogel-forming microneedles integrated with metformin were developed to adjust blood glucose levels in diabetic rats.Gelatin methacryloyl microneedles(GelMA-MNs)with different degrees of substitution were successfully prepared by a micro-molding method.The resultant GelMA-MNs exhibited excellent mechanical properties and moisture resistance.Metformin,an anti-diabetic drug,was further encapsulated into the GelMA-MNs,and its release rate could be controlled by the three-dimensional cross-linked network of microneedles,thereby exhibiting sustained drug release behaviors in vitro and implying a better therapeutic effect compared with that of subcutaneous injection in diabetic rats.The drug release period could be significantly prolonged by improving the cross-link density of GelMA-MNs.The results of hypoglycemic effect evaluation show that the application of GelMA-MNs for transdermal delivery in diabetic rats has promising benefits for diabetes treatment.
基金the National Natural Science Foundation of China(Nos.62003023,32071407,52073138,52003018 and 52003019)Beijing Natural Science Foundation(No.7212204)Beijing Advanced Innovation Center for Biomedical Engineering and Beihang University.
文摘Recurrent oral ulcer is a painful oral mucosal disorder that affects 20%of the world’s population.The lack of a radical cure due to its unknown underlying cause calls for innovative symptomatic treatments.This work reports a hyaluronic acid-based dissolvablemicroneedle patch(ROUMNpatch,short for recurrent oral ulcer microneedle)loaded with dexamethasone acetate,vitamin C and tetracaine hydrochloride for the treatment of recurrent oral ulcers.The ROUMN patch shows enhancement in both the anti-inflammatory effect elicited by dexamethasone and the pro-proliferation effect of vitamin C.In vitro experiments show that ROUMN has a higher efficiency in suppressing lipopolysaccharide(LPS)-induced interleukin-6(IL-6)expression than dexamethasone alone.Cell proliferation and migrationwere also significantly promoted byROUMNcompared to vitamin C alone.The healing-promoting effect of ROUMN was also verified in vivo using an acetic acid-cauterized oral ulcer model in rats.ROUMN as a treatment accelerated the healing process of oral ulcers,shortening the total healing time to 5 days compared with the 7 days required by treatment using watermelon frost,a commonly used over-the-counter(OTC)drug for oral ulcers.The rapid dissolution of the hyaluronic acid-based microneedles and the superior healing-promoting effect of the drug combination could lead to a broad application prospect of the ROUMN patch in the treatment of recurrent oral ulcers.
文摘Background: The microneedle fractional RF handpiece used in our study (Intensif Handpiece, EndyMed Medical, Caesarea, Israel) is a novel handpiece that uses a tip with 25 non-insulated, gold plated microneedle electrodes. The needles are inserted into the skin by a specially designed electronically controlled, smooth motion motor minimizing patient discomfort. RF emission delivered over the whole dermal portion of the needle allows effective coagulation resulting in minimal or no bleeding, together with bulk volumetric heating. Study Design/Materials and Methods: The study included 20 patients, treated for depressed acne scars using the IntensifTM?Microneedles handpiece (EndyMed PRO Platform System, EndyMed Medical, Caesarea, Israel). The degree of clinical improvement was assessed by the global aesthetic improvement scale (GAIS) and subjects satisfaction by post treatment questionnaires. Results: The number of treatments per patient varied between 1 and 6 (average 3.3 treatments per patient). Eleven patients (55%) reported none to minimal pain, six (30%) moderate discomfort and only three (15%) reported significant pain. Objective evaluation of the improvement by a board certified dermatologist showed improvement in 95% of patients. 25% showed excellent improvement, 50% experienced good improvement, and the 20% showed minimal improvement. One patient showed no improvement. Conclusions: The presented results show that the tested electronically controlled motorized insertion, non-insulated microneedle treatment technology provides a minimal discomfort, minimal downtime, effective and safe treatment for depressed acne scars.
基金the National Natural Science Foundation of China(Grant No.:82074031)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.:TP2020054)China,and Program for Shanghai High-level Local University Innovation Team(Grant No.:SZY20220315),China.
文摘Similar to blood,interstitial fluid(ISF)contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis.However,current ISF extraction techniques require bulky instruments and are both time-consuming and complicated,which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles.Currently,microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis.The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring,while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification.Herein,we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.
基金supported by the National Natural Science Foundation of China (NSFC 81902995)the project funded by China Postdoctoral Science Foundation (2018M641936)
文摘Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potentially prevent thrombosis via subcutaneous(SC)and intravenous(IV)administration,but there is a risk of haemorrhage via SC and IV.Thus,microneedle(MN)provides painless and sanitary alternatives to syringes and oral administration.However,the current technological process for the micro mould is complicated and expensive.The micro mould obtained via three-dimensional(3D)printing is expected to save time and cost,as well as provide a diverse range of MNs.Therefore,we explored a method for MNs array model production based on 3D printing and translate it to micro mould that can be used for fabrication of dissolving MNs patch.The results show that r-hirudin-loaded and hyaluronic acid(HA)-based MNs can achieve transdermal drug delivery and exhibit significant potential in the prevention of thromboembolic disease without bleeding in animal models.These results indicate that based on 3D printing technology,MNs combined with r-hirudin are expected to achieve diverse customizableMNs and thus realize personalized transdermal anticoagulant delivery for minimally invasive and long-term treatment of thrombotic disease.
基金supported by the China Capital Health Research and Development of Special (No. 2018-14111)the National Natural Science Foundation of China (grant No. 62004007 and No. 82027805)the China Postdoctoral Science Foundation Grant (No. 2021M700258)
文摘Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications.Existing schemes are limited by flexibility,biosafety,and manufacturing costs,which create large barriers for wider applications.Here,we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface,robustness of microneedles to penetrate the skin without fracture,and a simplified process to allow mass production.The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording.The normalized electrode–skin contact impedance reaches 0.98 kΩcm^(2)at 1 kHz and 1.50 kΩcm^(2)at 10 Hz,a record low value compared to previous reports and approximately 1/250 of the standard electrodes.The morphology,biosafety,and electrical/mechanical properties are fully characterized,and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized.The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording(over 8 h per night),providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.
基金financial support from the National Natural Science Foundation of China (32071342 and 31922042)Guangdong Special Support Program (2019TQ05Y209)the Fundamental Research Funds for the Central Universities (19ykzd31)。
文摘Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
文摘Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.
基金This work was supported by KIST(Korea Institute of Science and Technology)institutional grants(2E30965,and 2V07360)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.2020R1C1C1006065,2021M3F3A2A01037366)+1 种基金This work was also supported by the Korea Medical Device Development Fund grant funded by the Korea government(the Ministry of Science and ICT,the Ministry of Trade,Industry and Energy,the Ministry of Health&Welfarethe Ministry of Food and Drug Safety)(Project Number:9991006818,KMDF_PR_20200901_0145-2021).
文摘Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.
基金supported by the National Natural Science Foundation of China(Grant number:81973256/H3008)Guangdong Basic and Applied Basic Research Foundation(Grant number:2021A1515010475)the Fundamental Research Funds for the Central Universities(22qntd4505).
文摘Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming properties of PDT,leading to unsatisfactory therapeutic outcomes.Herein,a tumor acidic microenvironment activatable dissolving microneedle(DHA@HPFe-MN)was developed to realize controlled drug release and excellent chemo-photodynamic therapy of melanoma via oxidative stress amplification.The versatile DHA@HPFe-MN was fabricated by crosslinking a self-synthesized protoporphyrin(PpIX)-ADH-hyaluronic acid(HA)conjugate HA-ADH-PpIX with“iron reservoir”PA-Fe 3+complex in the needle tip via acylhydrazone bond formation,and dihydroartemisinin(DHA)was concurrently loaded in the hydrogel network.HA-ADH-PpIX with improved water solubility averted undesired aggregation of PpIX to ensure enhanced PDT effect.DHA@HPFe-MN with sharp needle tip,efficient drug loading and excellent mechanical strength could efficiently inserted into skin and reach the melanoma sites,where the acidic pH triggered the degradation of microneedles,enabling Fe-activated and DHA-mediated oxidation treatment,as evidenced by abundant reactive oxygen species(ROS)generation.Moreover,under light irradiation,a combined chemo-photodynamic therapeutic effect was achieved with amplified ROS generation.Importantly,the Fe-catalyzed ROS production of DHA was oxygen-independent,which work in synergy with the oxygen-dependent PDT to effectively destroy tumor cells.This versatile microneedles with excellent biosafety and biodegradability can be customized as a promising localized drug delivery system for combined chemo-photodynamic therapy of melanoma.
基金financially supported by the National Natural Science Foundation of China(82104071)Natural Science Foundation of Guangdong Province(2022B1515020085)Leading Entrepreneurship Team Project of Zengcheng District(202001004)。
文摘Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects.MNs are used to deliver different kinds of therapeutics(e.g.,small molecules,macromolecules,nanomedicines,living cells,bacteria,and exosomes)for treating various skin disorders,including superficial tumors,wounds,skin infections,inflammatory skin diseases,and abnormal skin appearance.The therapeutic efficacy of MNs can be improved by integrating the advantages of multiple therapeutics to perform combination therapy.Through careful designing,MNs can be further modified with biomimetic structures for the responsive drug release from internal and external stimuli and to enhance the transdermal delivery efficiency for robust therapeutic outcomes.Some studies have proposed the use of drug-free MNs as a promising mechanotherapeutic strategy to promote wound healing,scar removal,and hair regeneration via a mechanical communication pathway.Although MNs have several advantages,the practical application of MNs suffers from problems related to industrial manufacture and clinical evaluation,making it difficult for clinical translation.In this study,we summarized the various applications,emerging challenges,and developmental prospects of MNs in skin disorders to provide information on ways to advance clinical translation.
基金the Thailand Research Fund through the Basic Research Grant(Grant No.5680016)the Faculty of Pharmacy,Silpakorn University,and Mr.Subhachai Saibour,the factory director and department manager at Bangkok Lab and Cosmetics Co.,Ltd.,for facilities and financial support.
文摘This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers,in particular,the combination of microneedles patch(MNs patch)and low-frequency sonophoresis(SN).The hydrophilic macromolecule drug fluorescein isothiocyanate(FITC)-dextrans(FD-4:MW 4.4 kDa)was used as the model drug in our experimental design.In this study,excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs-and SNfacilitated FD-4 delivery.In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone,SN alone or untreated skin,respectively.The optimal parameters for the combination of MNs and SN included the following:10 N insertion force of MNs,4 W/cm^(2)SN intensity,6 mm radiation diameter of the SN probe,2 min application time,and the continuous mode duty cycle of SN.In addition,vertical sections of skin,clearly observed under a confocal microscope,confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers.These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin.
文摘Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.
文摘A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water with dissolved salts, and particles in the wet flue gas form secondary pollution in the surrounding atmosphere. In this study, a deep purification technology for flue gas involving phase-transition agglom- eration and dehumidification (PAD) is proposed. This deep purification technology includes two technical routes: the integrated technology of phase-transition agglomeration and a wet electrostatic precipitator (PAW); and the integrated technology of phase-transition agglomeration and a mist eliminator (PAM). Industrial applications of PAW and PAM were carried out on 630 and 1000 MW coal-fired units, respectively. The results show that the average amount of recycled water obtained from wet flue gas by means of PAD is more than 4 g.(kg.℃)-1 Decreasing the wet flue gas temperature by 1.5-5.3 ℃ allows 5%-20% of the moisture in the flue gas to be recycled; therefore, this process could effectively save water resources and significantly reduce water vapor emissions. In addition, the moist plume is effectively elim- inated. With the use of this process, the ion concentration in droplets of flue gas is decreased by more than 65%, the SO3 removal efficiency from flue gas is greater than 75%, and the removal efficiency of par- ticulate matter is 92.53%.