A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front...A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach...The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.展开更多
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec...Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.展开更多
Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The r...Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The results showed that Fuxin area located in the cross position of T-shaped trough and was affected by the cold air which continuously glided down.The corresponding warm front on the ground advanced southward and arrived here.It was the weather background of this thunderstorm weather.The position variation of lightning occurrence was closely related to the strong echo movement of squall line,and the velocity echo clearly reflected and predicted the movement tendency of the radar echo.展开更多
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve we...After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.展开更多
The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value i...The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.展开更多
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability ...An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.展开更多
Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (includi...Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis f...According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.展开更多
3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching C...3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.展开更多
To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method ca...To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method calculates time delay of multi-receivers, basing on the signal of the nearest receiver, then shifts other signals and adds them up, and gets one signal at last. It has been proved that this method can restrain noise, multiple waves, clutter waves and improve the precision of time location. In the end, an example is given to prove the method's efficiency.展开更多
This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch comp...This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch components, the load-related data model is obtained, the simulation is carried out, and the results are consistent with the actual test results. Through the theoretical numerical analysis of the load of the charging switch components of the transmitter device in the new generation of weather radar maintenance test platform, radar maintenance personnel at all levels can deepen the thorough understanding of the CINRAD/SA transmitter and have some enlightenment and improvement on the maintenance guarantee ability of the new generation of weather radar.展开更多
Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, t...Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.展开更多
A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of e...A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.展开更多
According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs ...According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs of data transmission under the radar state of emergency. This paper introduces the main construction content, structure diagram, network diagram, drills and emergency communications procedures of the emergency communication system for the province’s meteorological radar satellite and provides the test emergency situation of the province’s meteorological radar-satellite data transmission. Satellite emergency communication system can basically meet the needs of emergency radar data transmission.展开更多
Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP)...Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage.展开更多
Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requiremen...Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requirements of the China Meteorological Administration and many units have been provided. The modulator is a critical part of the transmitter’s high voltage, where high voltage, high current, and energy conversion are concentrated. It is therefore necessary to redesign the transmitter modulator cooling system protection. This article describes the new design of hardware and software solutions. The fan is a DV5214/2N DC fan from Ebmpapst, Germany. The speed is up to 5000 rpm, the power is 18.5 W, and the single fan current is about 0.8 A. It is powered by 28 V. The protection board uses a DC/DC module to output a 5 V voltage and a 3.3 V voltage adjustment chip LM1117. The embedded web software is based on the TCP/IP protocol stack provided by MICROCHIP. After the cooling system is designed and installed in the radar station in Xi’an, China and other places, after long-term operation, the comprehensive test shows that the system runs well.展开更多
We have observed weather clutter containing targets (ships) using an S-band radar with a frequency 3.05 GHz, a beam width 1.8°, and a pulsewidth 0.5 μs. To investigate the weather clutter amplitude statistics, w...We have observed weather clutter containing targets (ships) using an S-band radar with a frequency 3.05 GHz, a beam width 1.8°, and a pulsewidth 0.5 μs. To investigate the weather clutter amplitude statistics, we introduce the Akaike Information Criterion (AIC). We have found that the weather clutter amplitudes obey the log-normal, Weibull, and log-Weibull distributions with the shape parameters of 0.308 to 0.470, 4.42 to 4.51, and 15.91 to 16.44, respectively, for small data within the beam width of an antenna. We have proposed the log-normal/CFAR circuit modified a Cell-Averaging (CA) LOG/CFAR circuit. It is found that weather clutter is suppressed with improvement of 51.58 dB by log-normal/CFAR. As a result, we have showed that weather clutter observed by S-band radar does not obey the Rayleigh distribution and our log-normal/CFAR circuit has an effect on suppression of clutter and detection of target, while conventional LOG/CFAR circuit does not. In addition, if our circuit can be realized, we will have an advantage economically.展开更多
基金supported by Natural Science Foundation of China(NSFC)(Grant No.31727901)。
文摘A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金Guangzhou Science and Technology Plan Project(202103000030)Guangdong Meteorological Bureau Science and Technology Project(GRMC2020Z08)a project co-funded by the Development Team of Radar Application and Severe Convection Early Warning Technology(GRMCTD202002)。
文摘The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.
基金supported by the Science and Technology Grant No.520120210003,Jibei Electric Power Company of the State Grid Corporation of China。
文摘Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.
基金Supported by The Special Project of Public Welfare Industry Scientific Research(GYHY200806014)Nanjing University of Information Science & Technology Project(E30JG0730)
文摘Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The results showed that Fuxin area located in the cross position of T-shaped trough and was affected by the cold air which continuously glided down.The corresponding warm front on the ground advanced southward and arrived here.It was the weather background of this thunderstorm weather.The position variation of lightning occurrence was closely related to the strong echo movement of squall line,and the velocity echo clearly reflected and predicted the movement tendency of the radar echo.
基金supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072)NSF (Grant No. AGS-1341878)
文摘After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.
基金Key-Area R&D Program of Guangdong Province(2020B1111200001)National Key R&D Program of China(2017YFC1501701)+1 种基金National Natural Science Foundation of China(41875051)Guangzhou Municipal Science and Technology Planning Project(201903010101)
文摘The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.
基金funded by National High-Tech Research and Development Projects (863 Grant No. 2007AA061901)+2 种基金the National Key Program for Developing Basic Sciences (Grant No. 2012CB417202)the National Natural Science Foundation of China (Grant No. 41175038)the Public Welfare Meteorological Special Project (Grant No. GYHY201106046)
文摘An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.
基金the Knowledge Innovation Program of Chinese Academy Sciences (KZX3-SW-352)Frontier Program of Institute of Mountain Hazards and Environment, CAS (C3200307)
文摘Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
文摘According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.
文摘3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.
文摘To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method calculates time delay of multi-receivers, basing on the signal of the nearest receiver, then shifts other signals and adds them up, and gets one signal at last. It has been proved that this method can restrain noise, multiple waves, clutter waves and improve the precision of time location. In the end, an example is given to prove the method's efficiency.
文摘This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch components, the load-related data model is obtained, the simulation is carried out, and the results are consistent with the actual test results. Through the theoretical numerical analysis of the load of the charging switch components of the transmitter device in the new generation of weather radar maintenance test platform, radar maintenance personnel at all levels can deepen the thorough understanding of the CINRAD/SA transmitter and have some enlightenment and improvement on the maintenance guarantee ability of the new generation of weather radar.
基金Qinghai province key laboratory open fund of disaster prevention and reduction(QHKF201401)Key technology projects of China Meteorological Bureau(CMAGJ2014M21)+3 种基金National Natural Science Fund(41675029,41401504,41671425,41565008)Key Scientific Research Projects in Colleges and Universities(17A170005)China Postdoctoral Fund(2016M602232)Foundation of Henan University(2015YBZR020)
文摘Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.
文摘A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.
文摘According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs of data transmission under the radar state of emergency. This paper introduces the main construction content, structure diagram, network diagram, drills and emergency communications procedures of the emergency communication system for the province’s meteorological radar satellite and provides the test emergency situation of the province’s meteorological radar-satellite data transmission. Satellite emergency communication system can basically meet the needs of emergency radar data transmission.
基金the University of Oklahoma(OU)Supercomputing Center for Education&Research(OSCER).
文摘Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage.
文摘Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requirements of the China Meteorological Administration and many units have been provided. The modulator is a critical part of the transmitter’s high voltage, where high voltage, high current, and energy conversion are concentrated. It is therefore necessary to redesign the transmitter modulator cooling system protection. This article describes the new design of hardware and software solutions. The fan is a DV5214/2N DC fan from Ebmpapst, Germany. The speed is up to 5000 rpm, the power is 18.5 W, and the single fan current is about 0.8 A. It is powered by 28 V. The protection board uses a DC/DC module to output a 5 V voltage and a 3.3 V voltage adjustment chip LM1117. The embedded web software is based on the TCP/IP protocol stack provided by MICROCHIP. After the cooling system is designed and installed in the radar station in Xi’an, China and other places, after long-term operation, the comprehensive test shows that the system runs well.
文摘We have observed weather clutter containing targets (ships) using an S-band radar with a frequency 3.05 GHz, a beam width 1.8°, and a pulsewidth 0.5 μs. To investigate the weather clutter amplitude statistics, we introduce the Akaike Information Criterion (AIC). We have found that the weather clutter amplitudes obey the log-normal, Weibull, and log-Weibull distributions with the shape parameters of 0.308 to 0.470, 4.42 to 4.51, and 15.91 to 16.44, respectively, for small data within the beam width of an antenna. We have proposed the log-normal/CFAR circuit modified a Cell-Averaging (CA) LOG/CFAR circuit. It is found that weather clutter is suppressed with improvement of 51.58 dB by log-normal/CFAR. As a result, we have showed that weather clutter observed by S-band radar does not obey the Rayleigh distribution and our log-normal/CFAR circuit has an effect on suppression of clutter and detection of target, while conventional LOG/CFAR circuit does not. In addition, if our circuit can be realized, we will have an advantage economically.