期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
内循环(IC)厌氧反应器在几种高浓度废水中的工程应用及发展 被引量:8
1
作者 裴红洋 蒋京东 +1 位作者 刘峰 马三剑 《环境科学与管理》 CAS 2007年第12期120-123,共4页
内循环(IC)厌氧反应器是在上流式厌氧污泥床(UASB)的基础上研制开发而成的第三代高效厌氧反应器,具有负荷高、效率高、能耗低、占地少、投资省和运行稳定等优点。随着对该反应器技术研究的不断深入和完善,它在工程上也得到了越来越广泛... 内循环(IC)厌氧反应器是在上流式厌氧污泥床(UASB)的基础上研制开发而成的第三代高效厌氧反应器,具有负荷高、效率高、能耗低、占地少、投资省和运行稳定等优点。随着对该反应器技术研究的不断深入和完善,它在工程上也得到了越来越广泛的推广和应用。文章对IC厌氧反应器在不同种类废水处理工程中的应用实例进行了分析研究,并介绍了由国内环保单位自行开发的多级内循环(MIC)厌氧反应器技术在工程中的应用情况。 展开更多
关键词 内循环(IC)厌氧反应器 三相分离 多级内循环(MIC) 颗粒污泥 工程实例
下载PDF
Numerical approach for enhanced oil recovery with surfactant flooding 被引量:4
2
作者 Sadegh Keshtkar Morteza Sabeti Amir H.Mohammadi 《Petroleum》 2016年第1期98-107,共10页
The remained oil in the reservoir after conventional water-flooding processes,forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70%of the original oil in the pla... The remained oil in the reservoir after conventional water-flooding processes,forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70%of the original oil in the place(OOIP).To reduce oil residual saturation in laboratory experiments and field projects,surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases.Estimation of the role of design variables,like chemical concentrations,partition coefficient and injection rate in different performance quantities,considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design.Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer(SP)and alkali-surfactant-polymer(ASP).Modeling minimizes the risk of high cost of chemicals by improving our insight of process.In the present paper,a surfactant compositional flood model for a three-component(water,petroleum and surfactant),two phase(aqueous and oleic)system is studied.A homogeneous,two-dimensional,isothermal reservoir with no free gas or alkali is assumed.The governing equations are in three categories:the continuity equations for the transport of each component,Darcy's equation for the transport of each phase and other auxiliary equations.The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation.The validation of the model is achieved through comparing the modeling results with CMG simulators and BuckleyeLeverett theory.The results of modeling showed good agreement with CMG results,and the comparison with BuckleyeLeverett theory is explained according to different assumptions.After validation of the model,in order to investigate sensitivity analysis,the effects of system variables(partition coefficient,surface tension,oil viscosity and surface injection concentration)and performance variable(cumulative oil recovery)are studied.Finally,the comparison of oil recovery between water-flooding and surfactant-flooding was done.The results showed higher oil recovery with changes in capillary number when the partition coefficient is greater than unity.Increasing oil viscosity resulted in decreasing the oil recovery by changing in fractional flow.Moreover,it was concluded that the oil recovery was enhanced by increasing surfactant injection concentration.The oil recovery was increased when surfactant was injected to the system and this result was obtained by comparing water-flooding and surfactantflooding. 展开更多
关键词 Surfactant flooding Numerical simulation Finite difference Two phases-three component system Partition coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部