In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive wa...In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive water or oil phase on the molecular level. With signals sampled from series of small voxels simultaneously within a few seconds, high-resolution one-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectra from different spatial positions for inhomogeneous emulsion systems induced by susceptibility differences among components can be obtained independently. On the basis of integrals from these ~H NMR spectra, profiles obtained explicitly demonstrate the spatial and temporal variations of oil concentrations. Furthermore, the phase separation time and the length of the oil-water emulsion phase are determined. In addition, effects of oil types and proportions of the emulsifier on the emulsification states are also inspected. Experimental results indicate that 1D PHASICS (Partial Homogeneity Assisted Inhomogeneity Correction Spectroscopy) provides a helpful and promising alternative to research on dynamic processes or chemical reactions.展开更多
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, includ...Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.展开更多
Dual-asymmetric poly(vinylidene fluoride) (PVDF) separators have been fabricated by thermally induced phase separation with dimethyl sulfone (DMSO2) and glycerol as mixed diluents. The separators have a porous b...Dual-asymmetric poly(vinylidene fluoride) (PVDF) separators have been fabricated by thermally induced phase separation with dimethyl sulfone (DMSO2) and glycerol as mixed diluents. The separators have a porous bulk with large interconnected pores (-1.0 μm) and two surfaces with small pores (-30 nm). This dual-asymmetric porous structure endows the separators with higher electrolyte uptake amount and rapider uptake rate, as well as better electrolyte retention ability than the commercialized Celgard 2400. The separators even maintain their dimensional stability up to 160 ℃, at which temperature the surface pores close up, leading to a dramatic decrease of air permeability. The electrolyte filled separators also show high ion conductivity (1.72 mS.cm-1) at room temperature. Lithium iron phosphate (LiFePO4)/lithium (Li) cells using these separators display superior discharge capacity and better rate performance as compared with those from the commercialized ones. The results provide new insight into the design and development of separators for high-performance lithium ion batteries with enhanced safety.展开更多
In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the s...In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the small gravity environment, which leads to reduction in the service life of equipments. In this study, a passive condenser, developed on basis of the phase separation concept,is utilized to improve the performance of the condensation heat transfer under the small gravity environment. As a result of the limitation of experiments, the mechanisms of heat transfer enhancement of the phase separation condenser tube are revealed through numerical simulation based on the volume-of-fluid(VOF) method. The following conclusions could be obtained:(1) A novel phase distribution of ‘‘gas near the tube wall and liquid in the tube core'' is formed. The thin liquid film is indeed created after the flow pattern modulation by inserting mesh cylinder.(2)The condensation quantity for single bubble in the annular region increases about 16 times greater than that in the bare tube region in the case of Jl= 0.0574 m/s and Jg= 0.0229 m/s.(3) Gas volume fraction affects the parameters of liquid film thickness, bubble length and liquid bridge length. The increase in the gas volume fraction results in the decrease in the evaluation index from21.56 to 12.82. The evaluation index is defined as the ratio of the condensation quantities per unit tube length of the annular region and the bare tube region.展开更多
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01078 and 2017J05011)the Fundamental Research Funds for the Central Universities of China(Grant Nos.20720160125 and 20720150018)the National Natural Science Foundation of China(Grant No.11705068)
文摘In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive water or oil phase on the molecular level. With signals sampled from series of small voxels simultaneously within a few seconds, high-resolution one-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectra from different spatial positions for inhomogeneous emulsion systems induced by susceptibility differences among components can be obtained independently. On the basis of integrals from these ~H NMR spectra, profiles obtained explicitly demonstrate the spatial and temporal variations of oil concentrations. Furthermore, the phase separation time and the length of the oil-water emulsion phase are determined. In addition, effects of oil types and proportions of the emulsifier on the emulsification states are also inspected. Experimental results indicate that 1D PHASICS (Partial Homogeneity Assisted Inhomogeneity Correction Spectroscopy) provides a helpful and promising alternative to research on dynamic processes or chemical reactions.
基金supported by the National Natural Science Foundation of China(32330009 and 32000155)China Postdoctoral Science Foundation(2020M670520,2021T140705).
文摘Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
基金financially supported by the National Natural Science Foundation of China(Nos.21174124 and 21534009)
文摘Dual-asymmetric poly(vinylidene fluoride) (PVDF) separators have been fabricated by thermally induced phase separation with dimethyl sulfone (DMSO2) and glycerol as mixed diluents. The separators have a porous bulk with large interconnected pores (-1.0 μm) and two surfaces with small pores (-30 nm). This dual-asymmetric porous structure endows the separators with higher electrolyte uptake amount and rapider uptake rate, as well as better electrolyte retention ability than the commercialized Celgard 2400. The separators even maintain their dimensional stability up to 160 ℃, at which temperature the surface pores close up, leading to a dramatic decrease of air permeability. The electrolyte filled separators also show high ion conductivity (1.72 mS.cm-1) at room temperature. Lithium iron phosphate (LiFePO4)/lithium (Li) cells using these separators display superior discharge capacity and better rate performance as compared with those from the commercialized ones. The results provide new insight into the design and development of separators for high-performance lithium ion batteries with enhanced safety.
基金supported by the National Natural Science Foundation of China(51476054 and 51506026)the Program for New Century Excellent Talents in University(NCET-13-0792)
文摘In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the small gravity environment, which leads to reduction in the service life of equipments. In this study, a passive condenser, developed on basis of the phase separation concept,is utilized to improve the performance of the condensation heat transfer under the small gravity environment. As a result of the limitation of experiments, the mechanisms of heat transfer enhancement of the phase separation condenser tube are revealed through numerical simulation based on the volume-of-fluid(VOF) method. The following conclusions could be obtained:(1) A novel phase distribution of ‘‘gas near the tube wall and liquid in the tube core'' is formed. The thin liquid film is indeed created after the flow pattern modulation by inserting mesh cylinder.(2)The condensation quantity for single bubble in the annular region increases about 16 times greater than that in the bare tube region in the case of Jl= 0.0574 m/s and Jg= 0.0229 m/s.(3) Gas volume fraction affects the parameters of liquid film thickness, bubble length and liquid bridge length. The increase in the gas volume fraction results in the decrease in the evaluation index from21.56 to 12.82. The evaluation index is defined as the ratio of the condensation quantities per unit tube length of the annular region and the bare tube region.