期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Method for Collision Avoidance in Spacecraft Rendezvous Problems with Space Objects in a Phasing Orbit
1
作者 Danhe Chen A.A.Baranov +2 位作者 Chuangge Wang M.O.Karatunov N.Yu.Makarov 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期977-991,共15页
As the number of space objects(SO)increases,collision avoidance problem in the rendezvous tasks or reconstellation of satellites with SO has been paid more attention,and the dangerous area of a possible collision shou... As the number of space objects(SO)increases,collision avoidance problem in the rendezvous tasks or reconstellation of satellites with SO has been paid more attention,and the dangerous area of a possible collision should be derived.In this paper,a maneuvering method is proposed for avoiding collision with a space debris object in the phasing orbit of the initial optimal solution.Accordingly,based on the plane of eccentricity vector components,relevant dangerous area which is bounded by two parallel lines is formulated.The axises of eccentricity vector system pass through the end of eccentricity vector of phasing orbit in the optimal solution,and orientation of axis depends on the latitude argument where a collision will occur.The dangerous area is represented especially with the graphical dialogue,and it allows to find a compromise between the SO avoiding and the fuel consumption reduction.The proposed method to solve the collision avoidance problem provides simplicity to calculate rendezvous maneuvers,and possibility to avoid collisions from several collisions or from“slow”collisions in a phasing orbit,when the protected spacecraft and the object fly dangerously close to each other for a long period. 展开更多
关键词 SPACECRAFT collision avoidance rendezvous problem space objects phasing orbit
下载PDF
Multi-spacecraft Intelligent Orbit Phasing Control Considering Collision Avoidance 被引量:1
2
作者 LI Jian ZHANG Gang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期379-388,共10页
This paper proposes an intelligent low-thrust orbit phasing control method for multiple spacecraft by simultaneously considering fuel optimization and collision avoidance. Firstly,the minimum-fuel orbit phasing contro... This paper proposes an intelligent low-thrust orbit phasing control method for multiple spacecraft by simultaneously considering fuel optimization and collision avoidance. Firstly,the minimum-fuel orbit phasing control database is generated by the indirect method associated with the homotopy technique. Then,a deep network representing the minimum-fuel solution is trained. To avoid collision for multiple spacecraft,an artificial potential function is introduced in the collision-avoidance controller. Finally,an intelligent orbit phasing control method by combining the minimum-fuel neural network controller and the collision-avoidance controller is proposed. Numerical results show that the proposed intelligent orbit phasing control is valid for the multi-satellite constellation initialization without collision. 展开更多
关键词 orbit phasing control low thrust deep neural networks collision avoidance
下载PDF
Evolution of Electron Phase Orbits Based on Multi-photon Nonlinear Compton Scattering 被引量:5
3
作者 HAO Dong-shan, HAO Xiao-fei (Dept.of Phys.,Zhumadian Teachers College, Zhumadian 463000,CHN) 《Semiconductor Photonics and Technology》 CAS 2003年第3期196-200,共5页
The electron movement based on the multi-photon nonlinear Compton scattering with the extra-intense stationary laser field is discussed by using KMR (Kroll-Morton-Rosenbluth) theory.We find that there exists only an e... The electron movement based on the multi-photon nonlinear Compton scattering with the extra-intense stationary laser field is discussed by using KMR (Kroll-Morton-Rosenbluth) theory.We find that there exists only an evolution from periodicity to non-periodicity of the un-captured electron phase orbits after the energy exchange between the electron beam and laser fields.With the increase of the absorbed photon number n by an electron, this evolution will be more and more faster, while it is rapidly decreased with the enhancement of the collision non-flexibility ξ of the electrons and photons; When the electrons are captured by the laser fields, the evolution is finished, the electrons will stably transport,and the photons dont give up the energy to these electrons. 展开更多
关键词 multi―photon nonlinear compton scattering electron phase orbits EVOLUTION
下载PDF
Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma 被引量:1
4
作者 HAODong-shan LüJian 《Semiconductor Photonics and Technology》 CAS 2005年第2期107-110,共4页
The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-c... The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons,but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field,the evolution is finished,and the electrons will stably transport,and the photons don’t provide the energy for these electrons any more. 展开更多
关键词 multi-photon nonlinear compton scattering electron phase orbits EVOLUTION
下载PDF
Topological phase in one-dimensional Rashba wire
5
作者 汪萨克 汪军 刘军丰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期393-400,共8页
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps formi... We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. 展开更多
关键词 one-dimensional topological phase Rashba spin–orbit interaction spatial modulation quantized pump
下载PDF
Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites 被引量:4
6
作者 TU Jia GU Defeng +1 位作者 WU Yi YI Dongyun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期631-639,共9页
In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual appro... In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved. 展开更多
关键词 global positioning system precise orbit determination phase center variations phase residual estimation GRACE
原文传递
Efficient separating orbital angular momentum mode with radial varying phase 被引量:7
7
作者 CHENG LI SHENGMEI ZHAO 《Photonics Research》 SCIE EI 2017年第4期267-270,共4页
It is shown that orbital angular momentum(OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a sim... It is shown that orbital angular momentum(OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a simple and efficient separation method with a radial varying phase. In the method, specific radial varying phases are designed and modulated for different OAM modes. The resultant beam is focused to the spots with different horizontal and vertical positions after a convex lens, when the coordinate transformation, including two optical elements with coordinate transformation phase and correct phase, operates on the received beam.The horizontal position of the spot is determined by the vortex phases, and the vertical position of the spot is dependent on the radial varying phases. The simulation and experimental results show that the proposed method is feasible both for separation of two OAM modes and separation of three OAM modes. The proposed separation method is available in principle for any neighboring OAM modes because the radial varying phase is controlled. Additionally, no extra instruments are introduced, and there is no diffraction and narrowing process limitation for the separation. 展开更多
关键词 OAM Efficient separating orbital angular momentum mode with radial varying phase MODE
原文传递
Orbit determination using incremental phase and TDOA of X-ray pulsar
8
作者 Rong JIAO Lu-ping XU +1 位作者 Hua ZHANG Cong LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期543-552,共10页
X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. Thi... X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival(TDOA). Then, a weighted least squares(WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method. 展开更多
关键词 orbit determination algorithm Single X-ray pulsar detector Phase increment Two-body motion equations Weighted least squares method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部